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Abstract

*"Laboratory, theoretical and numerical research was conducted into the

structure and stability of baroclinic non-linear currents in a rotating fluid.

A rotating version of the dam-break problem in which a density current is gen-

erated after a barrier has been removed was studied. The speed of the current

and its width and depth were measured by Whitehead (1981) and more extensively

by Stern, Whitehead, and Lien Hua (1982), who report the experiments and com-

pare the results to theory. Properties of a limiting bore solution for rota-

tion density currents predicted earlier by Stern are incorporated into the

above theory to predict the speed of the nose of the current. Experiments are

described in which the current width is measured to be in reasonable agreement

with the theory.

Theoretical studies of the stability of a free isolated baroclinic jet

whose free surface in cross-section intersects the water surface at two points

by Griffiths, Killworth and Stern (1982) was undertaken. The waves permit the

release of both kinetic and potential energy. They can have rapid growth

*. rates, the e-folding time for waves on a current with zero potential vorticity

being close to one-half of a rotation period. Experiments with a current of

buoyant fluid at the free surface of a lower layer were also conducted. The

current was observed to be always unstable.

Killworth and Stern (1982) showed that a coastal density current in a ro-

tating system is unstable to d, : -tream wave disturbances when the mean poten-

tial vorticity increases towards the (vertically-walled) coast and when the

mean current vanishes there. Other new instability modes were also found which

do not require the potential vorticity extremum of quasi-geostrophic theory.

Paldor, in his Ph.D. thesis, used Rayleigh integral to prove that an un-

bounded geostrophic front of uniform potential vorticity is stable with respect

to small perturbations of arbitrary wavelength. Stern and Paldor (1983) used

extremum concepts to analyze large amplitude disturbances in a boundary layer

shear flow with an Inviscid and longwave theory. It was found that initially

weak horizontal convergences were concentrated and amplified in time.4

o"
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Introduction

Laboratory, theoretical and numerical research was conducted into the

structure Ad stability of baroclinic non-linear currents in a rotating fluid.

A rotating version of the dam-break problem in which a density current is gen-

crated after a barrier has been removed was studied. The rotation causes the

current to lean against the right-hand wall (looking downstream for counter-

clockwise rotation) and turbulent eddies are detrained to the side rather than

vertically. The speed of the current and its width and depth were measured by

Whitehead (1981) and more extensively by Stern, Whitehead, and Lien Bua (1982),

who report the experiments and compare the results to a theory which is a mod-

ification of the Benjamin theory of a non-rotating density current. Properties

of a limiting bore solution for rotation density currents predicted earlier by

Stern are incorporated into the above theory to predict that the speed of the

nose of the current would be 1.58 (g*h)1/2, and the width of the current

would be 0.42 (gh)/2 , where g* is reduced gravity, h is depth of the

current upstream of the nose, and f is the Coriolis parameter. Experiments are

described in which the current width is. measured to be in reasonable agreement

with the theory. The velocity of the highest Reynolds number flows studies may

also be approaching the predicted values, although the lover Reynolds number

flows go more slowly.

Theoretical studies of the stability of a free isolated baroclinic jet

whose free surface in cross-section intersects the water surface at two points

by Griffiths, Killworth and Stern (1982) was undertaken. The analysis includes

the Influence of vanishing depth and large inertial effects at the edge of the

current and shows that such currents are always unstable to linearized pertur-

% bations even when there is no extremum in the potential vorticity profile. The

waves permit the release of both kinetic and potential energy. They can have

rapid growth rates, the e-folding time for waves on a current with zero poten-

tial vorticity being close to one-half of a rotation period.

Experiments with a current of buoyant fluid at the free surface of a lower

layer were also conducted, and the observations compared with the computed mode
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of maximum growth rate for a flow with a uniform potential vorticity. The cur-

rent was observed to be always unstable, but, contrary to the predicted behav-

ior of the one-layer coupled mode, the dominant length scale of growing dis-

turbances was independent of current width. When the current was sufficiently

narrow compared with the Rossby deformation radius, disturbances have the

structure predicted by the one-layer theory.

Killworth and Stern (1982) showed that a coastal density current in a ro-

tating system is unstable to downstream wave disturbances when the mean poten-

tial vorticity increases towards the (vertically-walled) coast and when the

mean current vanishes there. Other new instability modes were also found which

do not require the potential vorticity extremum of quasi-geostrophic theory.

The instabilities release mean kinetic energy and mean potential energy as

well, though an increase of the latter can occur under certain circumstances.

Paldor, in his Ph.D. thesis at the University of Rhode Island, and in a

text prepared for publication (Paldor, 1983), used Rayleigh integral to prove

that an unbounded geostrophic f-ont of uniform potential vorticity is stable

with respect to small perturbations of arbitrary wavelength. The front was

bounded by a motionless fluid. The ageostrophic theory developed in his study

*d yielded a stable, near-inertial, long-trapped mode. Recent oceanic observations

of the increase in the energy of the inertial peak in the vicinity of fronts

support the existence of this inertial trapped mode. In addition, the theory

yielded a geostrophic mode which is expected to become unstable when the poten-

tial vorticity is not uniform.

Stern and Paldor (1983) used similar extremum concepts to analyze large

.* amplitude disturbances in a boundary layer shear flow with an inviscid and

longwave theory. It was found that initially weak horizontal convergences were

* concentrated and amplified in time, thereby increasing the maximum normal vel-

ocity until it becomes comparable with the horizontal velocity. The longwave

theory is applied to two-dimensional disturbances, then generalized to three-

*dimensional motions. The effect of an initial spanwise divergence is such as

to rationalize the initial vorticity assumed in the two-dimensional model.

I.
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Ageostrophic instability of ocean currents

By R. W. GRIFFITHS, PETER D. KILLWORTH
Department of Applied Mathemat ics and Theoretical Physics,

Silver Street, Cambridge CB3 9EW, England

AND MELVIN E. STERN
Graduate School of Oceanography, University of Rhode Island,

Kingston, RI 02881, U.S.A.

(Received 9 April 1981 and in revised form 17 September 1981)

We investigate the stability of gravity currents, in a rotating system, that are infinitely
long and uniform in the direction of flow and for which the current depth vanishes on
both sides of the flow. Thus, owing to the role of the Earth's rotation in restraining
horizontal motions, the currents are bounded on both sides by free streamlines, or
sharp density fronts. A model is used in which only one layer of fluid is dynamically
important, with a second layer being infinitely deep and passive. The analysis includes
the influence of vanishing layer depth and large inertial effects near the edges of the
current, and shows that such currents are always unstable to linearized perturbations
(except possibly in very special cases), even when there is no extremum (or gradient)
in the potential vorticity profile. Hence the established Rayleigh condition for in-
stability in quasi-geostrophic models, where inertial effects are assumed to be vanish-
ingly small relative to Coriolis effects, does not apply. The instability does not depend
upon the vorticity profile but instead relies upon a coupling of the two free streamlines.
The waves permit the release of both kinetic and potential energy from the mean flow.
They can have rapid growth rates, the e-folding time for waves on a current with zero
potential vorticity, for example, being close to one-half of a rotation period. Though
they are not discussed here, there are other unstable solutions to this same model when
the potential vorticity varies monotonically across the stream, verifying that flows
involving a sharp density front are much more likely to be unstable than flows with
a small ratio of inertial to Coriolis forces.

Experiments with a current of buoyant fluid at the free surface of a lower layer are
described, and the observations are compared with the computed mode of maximum
growth rate for a flow with a uniform potential vorticity. The current is observed to
be always unstable, but, contrary to the predicted behaviour of the one-layer coupled
mode, the dominant length scale of growing disturbances is independent of current
width. On the other hand, the structure of the observed disturbances does vary: when
the current is sufficiently narrow compared with the Rossby deformation radius (and
the lower layer is deep) disturbances have the structure predicted by our one-layer
model. The flow then breaks up into a chain of anticyclonic eddies. When the current
is wide, unstable waves appear to grow independently on each edge of the current and,
at large amplitude, form both anticyclonic and cyclonic eddies in the two-layer fluid.
This behaviour is attributed to another unstable mode.

- U 7 .>- - - - __--
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1. Introduction

There have been many studies of the stability of stratified shear flows in a rotating
fluid. Apart from Kelvin-Helmholtz instabilities, most studies have concentrated
upon quasi-geostrophic models, in which inertial forces are small compared with
Coriolis forces. These studies reveal two fundamental types of instabilities. The first of
these takes place in a one-layer fluid. The resulting (barotropic) instability is driven by
the horizontal shear of the basic flow, and requires an extremum in the profile of
potential vorticity (i.e. absolute vorticity divided by depth). Although potential
energy may be released by the instability, it is necessary that kinetic energy of the
mean flow be released. The second type of instability takes place in a two-layer fluid
(or, of course, a continuously stratified one). This instability, usually called baroclinic
instability (cf. Pedlosky 1964), can occur without the release of mean kinetic energy
but does require the release of mean potential energy that was stored in the density
field. Again, a necessary condition for instability is that the gradient of potential
vorticity changes sign somewhere within the fluid.

Models in which inertial forces are assumed to be much smaller than the Coriolis
forces are appropriate for large-scale motions in the ocean and atmosphere, but do not
provide a good description of many smaller-scale motions, such as the instabilities of
density fronts in the ocean, where inertial forces can be comparable with Coriolis
forces. By a'front' we refer to the situation where a density surface intersects an upper
or a lower boundary (such as the ocean surface or bottom). For this situation the
conservation of potential vorticity by fluid columns aligned parallel to the axis of
rotation, along with the vanishing layer depth, suggests that the fluid vorticity near
the front may be comparable to the background (planetary) vorticity. Motions will
then be strongly influenced by inertial forces. However, there have been very few
studies (Orlanski 1968) of instabilities at density fronts because of the complexity of
including the ageostrophic terms.

In this paper we want to study the situation in which the same density surface has
two intersections with the same boundary (i.e. there are two fronts present). Such a
situation occurs whenever buoyant water forms a narrow current at the ocean surface
(away from coastal boundaries) or when dense water flows in a narrow stream ( ver the
ocean bottom under the influence of buoyancy forces. One such case is the flow of cold,
dense Norwegian Sea water through the Denmark Strait and along the sloping bottom
south of the strait (Worthington 1969; Mann 1969; Smith 1976). Coriolis forces are
able to inhibit any slumping of the buoyant fluid in the direction perpendicular to the
direction of flow and, at the same time, the presence of a cross-stream bottom slope
prevents the current from curving to its right. We show here that the presence of two
free streamlines, at the intersections of the density interface with the bottom on each
side of the current, gives rise to another mechanism for instability. This mechanism
operates even when only one layer of fluid (the current itself) is present, and i.stability
does not depend critically upon the details of the potential vorticity profile.

Because we are particularly interested in the possibility that a single layer of fluid
can be unstable, we consider a current flowing beneath a deep second layer which is
stationary and passive. We show that a long rectilinear current bounded by two free
streamlines and adjacent to a sloping (or horizontal) boundary is (almost.) always un-
stable. Normal-mode perturbations with finite downstream wavelengths lead to the

4po



Ageoetrophic intability of ocean currents 345

Z

Fxu. 1 Te ongu"to fo thzn~ae rbe oniee hnppr

:'?::"'. d/.y=

• ". Fiolmw1. The configuration for the one-layer problem considered in this paper.

exponential growth of a combination of meandering and varicose modes.t This
combination leads to release of kinetic and potential energy from the original flow.
For a current with zero potential vorticity, the wavelength with maximum growth
rate is predicted to be 7-9 times the deformation radius based on the maximum depth
of the current, and the maximum growth rate gives an e-folding time of 0.57 rotation
periods.

For a general vorticity distribution, it is shown that instability will always occur
for sufficiently long waves whether or not the traditional Rayleigh criterion is satisfied,
provided only that the undisturbed relative vorticity does not vanish at points where
the flow velocity is equal to the phase velocity of growing disturbances. This kind of
instability relies upon a coupling between the two edges of the current. It is therefore
likely to continue to contribute to the energy release from sufficiently narrow currents
when there are two layers of finite depth and where baroclinic two-layer instability
may be important. As a particularly useful example (and one that may give a reasonable
description of oceanic and laboratory currents - at least up to the single-layer assump-
tion) we next consider flows with a finite but uniform potential vorticity and describe
the exact numerical solution of the eigenvalue problem. In this case the radius of
deformation and the current width are independent length scales. When all lengths
are non-dimensionalized by the deformation radius we find that the downstream length
scale of the most rapidly growing disturbance increases, while its growth rate decreases,
with increasing current width.

The very unstable nature of a current with two free streamlines is demonstrated by
laboratory experiments. A narrow current of buoyant fluid was produced at the free
surface of a deep lower layer by floating a layer of fresh water on top of a salt solution

rot. between two axisymmetric cylindrical walls in a rotating system. When the walls were
withdrawn, gravitational collapse produced a narrow annular flow with approximately
uniform potential vorticity. Coupled disturbances, with a structure that was very
similar to that predicted, appeared on the two fronts when the initial half-width of t he

j current was less than twice the initial Rossby radius. The flow rapidly developed into

t It can also be shown that in the limit, of very large downstream length scales variat ions of
current width will give rise to a purely meandering instability. This meandering mode will grow
linearly with time (Griffiths 1980).

..-



346 R. IV. Griffith8, P. D. Killuorth and M. E. Stern

a chain of anticyclonic eddies. The preferred downstream length scale of disturbance
was 7.4 ± 1.3 times the radius of deformation for the state of geostrophic balance and

*i was independent of current width. For narrow currents the observed length scale and
structure of the instabilities can be explained by the present theory, but the model
does not explain the instability that is observed when the .i rent is wide. In that case
a second mode of instability appeared to occur on each independent density front.
This second mode may well require an active second layer, or else it may be the mani-
festation of another unstable solution to the equations for a single-layer fluid. This

* other unstable solution occurs on each front independently and will be discussed in
another paper.

2. The stability problem

Governing equations

We consider the configuration in figure 1, in which a fluid of uniform density p2 flows
beneath an infinite fluid of density Pi < P2, against a uniformly sloping bottom whose
(constant) gradient in the y-direction is -a. The undisturbed flow is taken to be
parallel to the x-axis. Assuming no flow in the upper layer, and that a is small enough
for the hydrostatic assumption to hold, the momentum and continuity equations are

ut + uu, + v. -fv=-g'h , (2.1)

vt + uv, + vvy +f(u - U) = -g'hy, (2.2)

ht + (uh)X + (vh) = 0, (2.3)

where (u, v) are the (x, y)-components of velocity, t represents time, f is the Coriolis
parameter and g' = g(P2-P)/PI2 is the reduced gravity. The velocity 1!, given by

U = g'af-1 , (2.4)

is the constant x-component of flow induced by the sloping bottom and will often play
the role of a mean advecting current. Equations (2.1)-(2.3) imply that the potential

vorticity

P hf+vi-uy (2.5)
h

is conserved by fluid columns. Hence, if the potential vorticity at any time is uniform
throughout the flow, we may write

f h+v - = f (2.6).- h H0'

where H0 would be the uniform depth of the fluid when the relative vorticity is zero.
Let H be a typical depth of the undisturbed current (which, in examples, will often

be the maximum depth and will occur at y = 0). The flow is then characterized by the
radius of deformation (g'H)if-! and the time scalef-1 . Because we will be interested
in downstream (x) variations with some - usually large - length scale A, say, we define
a dimensionless wavenumber

c = 2n(g'H)i/fA.
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Convenient non-dimensional variables are then defined by

x = x*e-1(g'-)Tf 1, y=y*(g'H)f-,h (u, U) =(u*, *)(H),

V = V*e(g'H )i, $ - f -, = h H , (2.7)

and, in the case of uniform potential vorticity, Ho = H*'. Here the starred quantities
are nondimensional. Dropping asterisks, (2.1) and (2.2) become

Su + V(% - 1) = - (h + Itu), (2.8)

e'vt + u(e'vx + 1)- U = - (h+ JCev2)y, (2.9)

while the continuity equation (2.3) retains its original form. In the special case of
flow with uniform potential vorticity, (2.6) becomes

u 2V I - h (2.10)

The undisturbed flow

The undisturbed flow is taken as the steady solution of (2.8), (2.9), (2.3) with v - 0.
Then (2.9) reduces to the geostrophic relation

S= U-Y(2.11)

where the bars denote the basic flow whose stability is to be investigated. If the flow
has a uniform potential vorticity, (2.10) gives as an additional constraint the relative
vorticity

S(2.12)

As well as the case of general i, we shall consider two special cases in this paper,
both involving constant potential vorticity P. (The Rayleigh criterion for instability
would need P to change sign, so these cases would be stable by this criterion.) One
configuration is that of an infinitely long current (of dimensional width IV) extending

4 from y -L to y = L, where L =fW(g'H)i. The boundary conditions on (2.11),
(2.12) are thenh = 0at y - L, and the solution takes the form

I-= 1 cosh (y/-f)f] ;= ' sinh (y/Ji) (2.13)

cosh (L/A'i)J' cosh (L/.*"i)"

Thus the flow involves two length scales, L and V. In the limit of zero potential
vorticity - the second special configuration - a Y -* o, (2.12) yields , = 1, and (2.13)
reduces to

In this case the current width is fixed at L = V2 and the flow is described, in dimensional
terms, by the single length scale H.

The perturbation equations

We impose a small perturbation of the form (u',v',h') = (1,,\,)e( - 0 on the undis-
turbed flow (u, 0, h). Then the momentum and continuity equations (2.8), (2.9), (2.3)
give the following linearized equations for the perturbation amplitudes.

i  (i-c)a+(1 - )i = -h, (2.15)
12
9  
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d"I - = (2.16)

lkt-ii (OX)+(u-c) = 0. (2.17)

From (2.16) it can be seen that the downstream velocity perturbation is ageostrophic
at order e2. For currents with a uniform potential vorticity (2.10) gives the additional

:- condition that

o(2.18)

In §3 we present a solution of (2.15), (2.17) and (2.18) for a very simple but illu-
minating problem - that with zero potential vorticity. In § 4 the system (2. 15)-(2.17)
is discussed for completely general vorticity profiles. This discussion reveals the
influence, upon disturbances, of the cross-stream distribution of vorticity and of
asymmetric profiles. An exact numerical solution of (2.15), (2.17) and (2.18) for uni-
form potential vorticity distributions is then presented in § 5, and compared with
laboratory observations in § 6.

3. Flow with zero potential vorticity

Solution of the eigenvalue problem
When the potential vorticity vanishes, 0* -+ o and ii,, - 1 = 0. The longitudinal
momentum, continuity and potential-vorticity relations (2.15), (2.17) and (2.18)
become

(ii-C)'+ = 0, (3.1)
d i-,(OX) + (ii- c) , (3.2)

-j •-

di -- 2i = 0, (3.3)
dy

where X,;a are given by (2.14).
Elimination of A and P from the continuity equation (3.2) yields an eigenvalue

problem for the complex phase velocity c:

d ( Nh - fy) - 2[N - (;g- C) ] ,a = O. (3.4)
y y)

Because h( _ L) = 0, this equation has singularities at the edges of the current, and
we wish to find the solution for which the eigenfunction 0 is regular at y = ± L.t From
(3.3) we see that dfi(L)/dy must be finite in order that 0 be finite on the free streamlines.
Therefore, when (3.4) is integrated across the current, we require

f [ (F - C)2
] f = dy = 0, (3.5)

where L = V2.

t This condition may also be derived more formally by the requirement that the location of
vanishing depth remain a streamline.

7
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In order to solve (3.4), (3.5), with a finite wavenumber e, c and 0 may be expanded
in the power series

0 1 2 Co + c + 6% + (3.6)
4(y) - u.(y) + e+(y) + etu,(y)

where the amplitude is normalized by requiring

(0) =i 1. (3.7)

Substitution of the expansions (3.6) into (3.4), and requiring that duo/dy be finite
at y - _ L, where f 0, shows that

duo 0. (3.8)

Hence the leading-order downstream velocity perturbation is independent of y.
From (3.7) we set u = 1 and require that u1 (O) = u 2(0) ..... 0. The eigenvalue co
is given by (3.5), in which the leading-order terms imply

f L)'] dy = 0.

This is a quadratic equation for co which, with X and ii given by (2.14) and L =2,
can only be satisfied by

co = U. (3.9)

Thus normal modes are stable in the limit e -+ 0, and are advected downstream at
speed U.

The terms of order e obtained from (3.4) imply that du/dy = 0, and, in order to
satisfy (3.7), this requires ui = 0. Equating the terms of order 0' obtained from (3.4)
yields an equation for the eigenfunction U2 :

,. d [ dU2
"-'. dy ( dy]

where
"-i u i- u- 17 (3.10)

is the current velocity relative to its mean velocity U. By again applying the condi-
tions that du2/dy be finite at h = 0 and u2(0) = 0, we find the ageostrophic perturbation
U = jy2 . The condition (3.5) gives

2Lc2-- u2(-h -i)dy = 0,

which yields the pure imaginary eigenvalues

C .IV.15. (3.11)

The positive root describes exponentially growing modes that are advected down-
stream at speed U. Disturbances with large but finite wavelengths are therefore un-
stable, even though the Rayleigh condition is not satisfied.

When the calculation is continued to higher orders in c a pattern emerges, with
even-numbered eigenvalues being zero (apart from c,) and the rest inaginary. How-
ever, the power-series expansion reveals that the growth c:cl reaches a maximum at
a wavenumber only slightly less than unity, where the series converges slowly. In

12-2
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FIGuIE 2. Growth rate of normal modes with wavenumber e on a current with zero potential
vorticity: -, exact numerical resulta; -- -, first-order growth rate le'1 given by the wave.
number expansion; ..... , Pad6 approximation based on terms up to 0(e02) in the expansion.

order to investigate disturbances with e - 1, it was necessary to solve (3.1)-(3.3)
numerically, using the Taylor system (Norman 1972). The solution was obtained by
integrating from y = L - y, where 'y = 10-4, with initial conditions obtained from an
expansion of (3.1)-(3.3) near - 0. The solution at y = 0 was found. The equation was
then solved again, beginning at y = -L + y and integrating to y = 0. The solutions
for 9 were matched at y = 0 by scaling the solution from y = L - y; c was then adjusted
iteratively to match 4,, (to an accuracy of 10-4). Only imaginary eigenvalues c were
found and, at e .4 1, these are identical with those calculated using the expansion (3.6).

On figure 2 the computed dimensionless growth rate ect is plotted as a function of
the wavenumber (solid line). This numerical result is almost identical to the curve
(dashed line) that is obtained from the power-series expansion (3.6), which is here
extrapolated to e > 1 by taking the Pad6 approximation based on the first six non-
zero terms. The growth rate achievbg its maximum value at e = 0-80, which corres-

- ponds to a wavelength that is 7-9 times the Rossby radius. Wavenumbers greater than
e = 11 yield only real eigenvalues and so are stable.

The eigenfunction8
Substitution of the individual functions uo, U2, Us, . into the longitudinal momentum
equation (3.1) and the vorticity equation (3.3) yields the depth and cross-stream
velocity perturbations respectively, for successive orders in e. Since the amplitude
of each perturbation quantity ('u', v', h') has the downstream dependence eiz(neglecting
the uniform advection velocity U), we write (t4, u', u2, .... (uo , u1 , u2, ... ) elz , and
similarly for v' and h'. Then the real parts of the eigenfunctions of lower order in e are

t4=cosx, v;=ysinx, h4=-ycosx, (3.12)

"-4 -2.-. ,, cos xh, si x.
T5-I
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(a) ________

-L

Y,

s'?j

(b)

(C)

FIouR 3. The structure of the zeroth-order eigenfunctions: (a) the first-order eigenfunctions;
(b) (from (3.18)) and the combination of these two modes; (c) for c of order one and a flow with

Szero potential vorticity. The undisturbed flow '4 is linear with y.

The nature of the zeroth-order eigenfunctions is sketched in figure 3(a). Because
both the cross-stream velocity v' and the undisturbed longitudinal flow il are anti-
symmetric in y, the zeroth-order perturbation corresponds to a meandering of the
stream. The corresponding depth perturbation is linear with y, so that the total depth
profile h + h; remains symmetric and parabolic about the local midpoint of the current.

The first-order cross-stream velocity v' is independent of position across the stream,
but, because i = y, it corresponds to variations in the current width, as sketched in
figure 3 (b). This perturbation has an amplitude whose phase is 17r radians ahead of vo.
The depth perturbation hi is also independent of y, and therefore tends to maintain
the symmetry about the midpoint y = 0. As a result of the form of /4, the depth
increases uniformly at the widest section of the current and decreases at the narrowest
section.

Higher-order eigenfunctions (such as v and v3) have structures similar to those
already described, but tend to concentrate the amplitude of perturbations nearer the
two free streamlines. When the perturbations sketched in figures 3 (a, b) are super-
imposed, noting the comparable amplitudes in (3.12) and assuming C - 1, the structure

. . of the flow becomes that sketched in figure 3 (c). There is still a uniform reduction of
- the current depth at x = J and a uniform increase at x = In. When such a disturbance
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+II
-Y ; 

. .......... --

x
FIGuRz 4. Equispaced contours of the total depth i + h' from the numerical solution for zero
potential vorticity, for e = 0.8 and a depth perturbation of maximum amplitude 0.28 (chosen
for clarity). Regions of negative A + A' are hatched.

reaches sufficiently large amplitudes it is likely that regions of closed circulation will
develop within the deeper, broader parts of the stream, and such regions will be centred
about the midpoint of the flow. Figure 4 shows a plot of the contours of constant h
(the total depth of the current) for the numerical solution at e = 0.8. The meandering
and variations of width are visible, along with a phase difference of in radians between
the two edges of the flow. The widest sections of the current are also deepest, even
deeper than the mid-point of the undisturbed flow.

Energetics

The source of energy for the growing disturbances may be determined from the
structure of the depth and velocity perturbations. In order to calculate the energy
changes we consider small perturbations (u', v', h') to (2.8), (2.9), (2.3), where we revert
here to a general mean flow. Taking Xu' times (2.8), Xv' times (2.9), h' times (2.3), and
adding yields the local energy equationK

_B+ hX,<'v'> + {<,'v'>) = 0, (3.13)

where the angle brackets denote an average in the x-direction and
'E = (<(u'2 + 62v'2 ) + h'2> (3.14)

is a convenient measure of the energy of the perturbations (kinetic plus potential).
As is well-known, interpretation of the local terms in (3.13) as kinetic and potential
energy transfers is dangerous. To avoid this, we integrate (3.13) to give

d:.._, =- i'v'> dy, (3.15)
dt - -
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which shows that growing perturbations draw energy from the kinetic energy of the

mDan flow. However, at the end of § 4 we shall show that potential energy is also

relased.
For the asm of zero potential vorticity the Reynolds stress term (u'v') is evaluated

from (3.12) as
-2

so that, as ky is positive in (3.15), the perturbations induce a positive Reynolds stress
which transports momentum across the stream. The superposition of meandering and
varicose modes with a phase difference of fi therefore removes kinetic energy from

the mean flow. In general, though, it is not yet obvious that the right-hand side of

0. 15) need be positive (and the flow unstable) for an arbitrary mean velocity profile.
This is the subject of § 4, where it is shown that indeed there must always be unstable
perturbations to any mean flow with two free streamlines.

4. The case of arbitrary mean profile
Formukation of the problem

We again consider a current such as that discussed in §2. This time, however, no

restrictions are placed on the depth profile save that I - 0 at y = ± L. The perturba-

tion equations (2.15)-(2.17) are to be satisfied, while ii and X are connected by the
geostrophic constraint (2.11), and we shall show that an unstable mode exists for
general depth profiles X.

For convenience, an integrated depth perturbation () can be defined as

~ frI (4.1)

S04 + 601 + 6k + 63109 603 + e304 + .... (4.1 a)

where txe wavenumber expansion (4.1 a) also holds for c, 0 and 0, and

ha =-,-,, (n = 0,1,2,...). (4.2)

The q must satisfy some boundary conditions and, from (4.1), we have

= 0, (4.3)

where we may choose the magnitude of 0( - L) arbitrarily. Selecting for convenience
the value q(-L) = -*(-L), we have

Ooy(- L) = - f(- L), ](4.4)
;.:" Oy(-L) =0 (n > 0J.

In addition, application of the continuity equation (2.17) at y ± L gives, since 0 is
well behaved,:-"" -- UiP+ (u-c) = 0 (y =±+L). (4.5)

In general the i will have a boundary-layer structure of thickness c at critical
layers. (where i = 0), and an inner expansion, followed by asymptotic matching
across these layers, is necessary. The details of the inner expansion are not shown

-.-, - - - - - - -
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explicitly here, but are recorded in appendix B, which has been lodged with the
editorial office of the Journal of Fluid MVechanics, and will be used in what follows.
An alternative proof of the existence of an unstable mode, avoiding many of the
boundary-layer problems, is given in appendix A. However, that approach assumes
the existence of well-behaved eigenfunctions, while the expansion technique outlined
in this section explicitly finds such well-behaved eigenfunctions.

The expansions of (2.15)-(2.17) may be written symbolically as
c.) u.,+ (1 - i) iv,+0,j, +. ,, =f 0, (4.6)

us + Bu = y - ,(4.7)

Nu,. - (Xiv.), + (N- ce) 0, + C. = 0, (4.8)

for - 0, 1,2,..., where A,, B. and 0. involve combinations of terms from previous
values of n with eigenvalues up to c.. Thus

iv. , (ii - c.) + B.(5 - c.) - A,. (4.9)

Substitution of (4.9) into (4.8), integration from -L to y, and multiplication by
(1 - U.)/N gives, remembering that 7( - L) = 0,

0i C) .1, -ii 0., C~i) ~-L (XB, QC3 dy

-B(u-c 0 )+A,. (4.10)

Equations (4.9) and (4.10), with boundary conditions given by (4.4) and the expan-
sion of (4.5), form an cigenvalue problem for each c.. One particular solution, which
couples the two free streamlines together, was isolated in § 3 for the special case of
zero potential vorticity, and we now examine the corresponding solution for the
general case. We show that, except under very special conditions, the mode is always
unstable.

Solution up to order 62

To leading order, A 0 = B0 = CO = 0, and, from (4.10), and (4.9), 00 and v. satisfy

-CO) 00V 4- 0 + (c0- U)(1-ii) 0 (4.11)

.iVo = 0i - CO) 00VV - oft (4.1 2)

The set (4.11), (4.4) and (4.5) pose an eigenvalue problem for c, which may have many
solutions; no indication has been found of whether or not co can be complex. However,
we choose here to examine a specific solution to (4.11) in which c, is real, and show
that to next order c is complex. We choose the solution

c0 = U, 50o=h, ivo0 - , uo = o, h= U-u--, (4.13)

so that, to leading order, the disturbance is simply propagated downstream at speed
U. We see that, in general, u0 and ho are real, while vo is imaginary, implying that it'

and ' have phases which are in ahead of v'.

"
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The O(e) terms have A, = -cfu,, B, = 0 (i.e. the along-stream flow remains geo-
strophic), and 01 - -cgSov. Then (4.10) becomes

401y- uyOly + cl = 0, (4.14)

and (4.4) gives the conditiojns 0 = 0 at y =f-L, while the condition (4.5)
gives no information to this order. Now (4.14) has two independent solutions, one
with 0,, proportional to ii, and one with Y Ydy

=-c,. (4.15)

Consideration of (2.11) shows that il must vanish at least once in the interval (- L, L).
The places where il vanishes are the critical layers for this solution. We shall treat
the case of one such layer (at y = Ye), but the extension to several layers is immediate.
We shall also assume that ii,,, (we denote values at the critical layer with a suffix c)
is non-zero. (In the extreme case of i vanishing quadratically, rather than linearly,
at a critical layer, it can be shown that the solution is stable. Physically, there is
stability if the vorticity % , vanishes when f vanishes.)

The solution (4.15) is well-behaved as G approaches zero only if iin is zero (as
would be the case for all symmetric depth distributions, for example); otherwise the
solution contains logarithmically growing terms. In either case, a matching across
the critical layer is necessary. We therefore write

fi=- L(j) dj I[ dg] (Y < YO, (4.16)

-- ---- Cl+YL(,) dj +L d6 (Y > lyC), (4.17)
J+L J L[Ul(N)

where a, fl are unknown constants, and the boundary conditions on (4.14) have been
used to give (4.16). To match across the critical layer, we shall ncd the behaviour of

near y y Ye. Writing i = y-ye, we have

1I (og71- C14''q (-L fZ2 8
u,,e 2iiy0

_ LM~o(_)+ U (I < 0), (4.18)

~01+0 + _-- + iagcVS +1 1 u Ye (lo + - ) Z-t c ~ #[~"+d'it 2

+!-L0r8 + -j2 ill (I > 0), (4.19)

where 8 > 0 is a small positive number. The expression log (- ) is to be interpreted
as log 8 ± in, and from the inner expansion it is found that this must be

log 8 - in sgn (U..).

At 0(62) in (4.6)-(4.8), A q -cu,- c2 u, B2 = i 2 and C2 = -c 1 1 5 -c 22o.. Hence
the flow becomes ageostrophic at this order. Then from (4.10) 02 satisfies

fio2uy - p02S 1 + L-- Y dy+u-cqSf13 +c0 +€y(' = 0, (4.20;
', :h f-L h

together with 0 2 = = 0,y L.

""- ' ""- " " -" " •" ..- -
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The condition (4.5) at V - + L yields the same result as requiring g$s to be well-
behaved in (4.20) when I vanishes, namely

61A).;6T(L)- J 2dy (4.21)

The results of the asymptotic matching are straightforward, with 0, 01 being con-
tinuous at Y - Ye, the vilogv behaviour being handled by the inner expansion, and
the well-behaved part of OW being continuous at y = ye. We now match the 0(9s)

terms in the expansions (4.18), (4.19) for 01 to find the coefficient a introduced in (4.17):
for D- 0

'"p/o-8 L dg 2 (4.22)

The term in brackets is well known to be the Hadamard 'finite part' of the (divergent)
integral of 4-2, and is a well-defined negative quantity. Its value is that of a naive
integration of 47-2 from -L to +L, cavalierly ignoring the singularity at Ye, and
simply substituting the end values + L into the integration.

Having an expression for the constant a, we can now evaluate 0,(L) and then make
use of (4.21) to find the eigenvalue c,. First note that 01 is continuous at ye, so that

we- +f * 8 'o_0 j,0

C- d L + ail dy - a f dyil [ d[ )- C -y f L d 0 6 + 0 f v + f J V + S [ l( 7)]' "
(4.23)

Using the geostrophic relation (2.11), integrating (4.23) by parts, and substituting

for a from (4.22) gives, for small 8,

PC- I'z X . . e e,.-- -c, 'pj _L i)+ 72, 1 (4.24)

-eiFpf L Edy + !jvii c h (4.25)

where we use the notation Fp to denote the finite part of the integral. Then (4.21)
gives, finally,

fL /iii'dy
- 1 L. 7,/ _ _ . (4.26)

(For several critical layers, the last term in the denominator becomes a sum over all
critical layers.)t

If U.., the gradient of relative vorticity at the critical layer, does not vanish, then
(4.26) gives c{ as complex, and so there exists a mode with .. (c,) > 0, and there is
instability. If ii. does vanish, it is easy to see that the finite part of the integral is

t The formula (4.26) has been confirmed by numerical integration of (2.15) (2.17) for specific
asymmetric profiles.
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negative.t Hence c1 is only imaginary and the positive root of (4.26) gives an un-
stable mode. We have therefore proved the existence of an unstable wave mode for
all distributions of depth, except in the unusual case when 4,c vanishes at a critical
layer. The above analysis even holds in the zero-potential-vorticity case (§ 3) despite
the fact that I - ii, in (4.12) then vanishes identically. The expression (4.26) reduces
to cl - in that case, in agreement with the analysis in § 3.

Energy transfer.

The energetics of currents with arbitrary velocity profiles are easily evaluated. We
have (outside the critical layer, which has a negligible extra contribution) the Reynolds
stress

SU'v'>= iM j(uV) + ieR(UoVI + U, VO) + 0(61), (4.27)

4 where the asterisk denotes complex conjugate. Using (4.13), the zeroth-order terms
cancel. The first-order perturbation eigenfunction can be found from (4.18) and gives,
after simplification,

.i(t(Uov*) fi ilty(ic1 + iot), (4.28a)

-u*= O (- it,Oi + ici), (4.28b)

whence

(u'v') -- - c,1 (1 + i) + O(e), (4.29)

where c,, is the imaginary part of c. Then (3.15) yields

"f dy= eciicci, -f - )dy+O' 2) (4.30)"""dt - r,. iyi-U )d

and, after use of (2.11),

" f 2  E dy l eci, fL (10, + A24) dy > 0.

Hence the perturbation energy is indeed growing with time (as it must for exponentially
growing modes).

Finally, we note that the perturbation mass (i.e. heat) transfer across-stream is
given by

(v'h'> = Jer1 ii. (4.31)

In the problem of § 3 (and also in § 5), the sign of (4.31) is such that the mass flux is
directed outwards from y = 0. The further significance of <v'h'> appears when we form
an expression from the continuity equation (2.3) for the rate of change of mean poten-
tial energy J(h)2 , where again h h+h'

.. =h<V h >y 0. (4.32)

t This is best seen by considering the sign of 0, in (4.16). (4.17). If i vanishes only once, for
simplicity, ti is negative for y < y, and positive for y > y,. Hence (4.15) and (4.22) show that

. 1 c- I is positive for y < y. and for y > y¢, so that 0 (L) is a positive multiple of c, in this case.
Then (4.21) implies that c, is purely imaginary.

U *
U:-
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Then

L

In t sL of dY <0. (4.33)

In other words, rlease of mean potential energy is also necessary during the growth
of the unstable mode discussed here. However, after a little algebra it may also be
shown that the totd potential energy, given by the integral of (j|h) +j(h">), is
invariant. Conservation of total energy (kinetic plus potential) thus implies that total
kinetic energy is also invariant.

5. An example: currents with uniform potential vorticity
The results in § 4 can be applied to any particular distribution of vorticity. They

show that (almost) all currents of the form sketched in figure I are unstable to a wave
mode whose growth relies upon a coupling of the two free streamlines, and the general
analysis gives useful physical understanding.of the flow. However, the expansion
about small wavenumber is not suitable for describing the most rapidly growing mode,
which is that likely to be observed in laboratory experiments. We therefore present
exact numerical solutions of the eigenvalue problem (2.15)-(2.17) for one particular
case: that of currents with a finite and uniform potential vorticity .9-, for which
the undisturbed flow is given by (2.13). The current is now also assumed to be flowing
over a horizontal plane, so that the advection velocity U is zero.

For both the numerical solutions and comparison of these with experimental results
it is much more convenient, when there is a uniform potential vorticity, to modify
the original non-dimensionalization (2.7). By using the 'potential vorticity depth' He,
rather than the maximum current depth H, as a depth scale, one of the two length
scales L and Jr can be eliminated from (2.13). Thus we define a new dimensionless
wavenumber k and a current width L. by

k , e'i = 2 n j, Lo = L fW (5.1)
fA JrO = -F (g'H*)lV

and similarly rescale current depth and velocities using H instead of H in (2.7). The
potential vorticity .Jr- can be expressed in terms of the current width L by using the
definition X(O) = I in (2.13), whence

Jr - 1 = I 1 (5.2)
cosh L o

If Lo -* 0, we approach the limit of zero potential vorticity A'-' = 0, while a very
wide current, Lo -o o, implies that ,*-' -* 1. In these new variables the undisturbed
flow becomes

k'" cosh y sinh yI' -= = - (5.3)
coshL o' cosh LO,

The mowrvntum and continuity equations (2.8), (2.9) and (2.3), as well as the pertur-
bation equations (2.15)-(2.17), are all unchanged except that c is replaced by k.
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FIGURE 5. The computed wavenumber k=(a) and growth rate kjcj (b) for the most rapidly

growing mode on a current with uniform potential vorticity, as fumctions of the current width

Lo = fW/(g'Ho)I. In (a) the wavenumber cm, which is non.dinensionalized by the Rossby

radius based on the maximum depth H, is also plotted (broken line).

Numerical aolution8

The perturbation equations (2.15)-(2.17), with k replacing c and with the undisturbed

flow defined by (5.3), have been solved using a numerical approach similar to that

described in § 3. The solution was first computed for a range of values of the wave-

number k and a number of values of the width L,. As for the case of flow with zero
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potential vorticity, the eigenvalues are all found to be pure imaginary. Hence the
normal modes are unstable and are again advected downstream at speed U.

For each value of Lo, the dimensionless growth rate tici increases with increasing
wavenumber at k 4 1, but reaches a maximum and decreases rapidly at sufficiently
large wavenumbers. The wavenumber km at which the maximum growth rate is
achieved was found by solving the equations at successively intermediate values of

" k near the maximum of the growth-rate curves. Resulting values of km are shown on
figure 5(a). The most rapidly growing waves are relatively long (km < 1) when the
current is 'wide' (L0 > 1), and they are short (with k.> 1) when the current is
'narrow'. More quantitatively, km satisfies the relation km = - 1Lj- approximately
for L0 < 2, but decreases much more rapidly with increasing L. when L. > 2. On
figure 5 (a) we have also plotted e. (broken line), which is the dimensionless wave-
number (with maximum growth rate) based upon the length scale (g'H)f- 1. The two
wavenumbers are related through L0 by combining the definition k = &ti with (5.2).
(The two are significantly different at small values of L0 , where the current depth H
differs more radically from the' potential-vorticity depth'H 0 .) As Lg-* 0,e. approaches
an upper limit ofem = 0.8. This limit corresponds to flow with zero potential vorticity,t
and the wavenumber is the same as that found in § 3. At Lo ) 1, on the other hand,
H -+ H0, so that em and km become identical. The most rapidly growing mode then has
a wavelength that is very much larger than the Rossby radius (g'H)if1.

On figure 5 (b) is plotted the growth rate kmlcl of the most rapidly growing mode as
a function of the current width Lo.For small values of Lo this growth rate approaches
the maximum growth rate previously computed for normal modes on a current with
zero potential vorticity (see figure 2). However, the growth rate decreases exponen-
tially when the current width is increased beyond L. = 1. At L0 = 2 the growth rate
kmlCI is an order of magnitude smaller than it is at L0 - 0.5, giving an e-folding time
(kmn cjf)- 1 of eight rotation periods.

The rapid decrease of growth rate with increasing current width is predicted by the
wavenumber expansion of § 4. For a current of the form (5.3), the general results (4.26)
for the first-order eigenvalue reduces readily to

1(cohLo)- I L I 2L0
t , sinhl2LJ (5.4)

Here, c, is imaginary for all values of Lo, but its magnitude decreases exponentially
at large L0: cl - .4i( j)texp (-Lo) (Lo > 1). It can also be shown that there are no
other long- wave solutions for the case of constant potential vorticity.

The etructure of growing disturbances
Examples of computed depth and velocity perturbations for a current with uniform
potential vorticity are shown in figure 6. In this case the width was L0 = I (giving
a potential vorticity 0-1 = 0.35) and the amplitude A of the depth perturbation was
set at 10-1. Figures 6 (a, b) show contours of the total depth h + h' and depth pert ur-
bation h', respectively, while figure 6(c) shows contours of the cross-stream velocity

4~ t Note that use of the wavenumber-expansion technique discussed in §§3 and 4 will not
allow us to approach the limit of zero potential vorticity (0 -* co) at any finite value of 6,
since we would require k --.04 -4 1 (but of course this is no deterrent to a numerical solution).
Thus we cannot simply let L0 -+ 0 (analytically) to recover the zero-potential-vorticity case.

,'

o. - - - p
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FIGURE 6 (a, b). Legend on p. 362.

perturbation v' for the same most-rapidly growing disturbance. As predicted by the
wavenumber-expansion technique (§§ 3 and 4), the perturbation involves both a
meandering and a longitudinal variation of current width. There is a phase difference
of in radians between h' on the two free streamlines, and the greatest cross-stream
excursions of the centre line occur at x-positions very close to where IaLo/axj is
greatest.

From figure 6 it can be seen that the depth perturbation and, similarly, the pertur-

bation energy (as indicated by v') are confined more closely to the edges of the current

L'-



* 368 R. W. Griffihs, P. D. Kilworth and M. R. Stem

+/1
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.1W

FIGURE 6. Contours of (a) the total depth A + h', (b) the depth perturbationfh', and (c) tht cross-
stream velocity perturbation V/ for the most rapidly growing mode on a current with uniformi
potential vorticity and L. = 1.- The solution in (a) is for a depth perturbation of amplitude 0. 

PRegions of negative values are hatched.

frs H.
waterI

R2W, 40 cm

NaCI solutionI

-- 45cm -
FzIGURz 7. A sketch of the laboratory apparatus in vertical section. The cross-hatching indicates
the upper layer of fresh, dyed water inside the annulus and the deep lower layer is a NaCI
solution.

(even for LO = 1) than was the case for perturbations on currents with zero potential
vorticity. From the power-series solution presented in § 4 the leading-order eigen-
functions (4.13) reduce, for constant potential vorticity, to the simple forms

cosh y sinh y(5)
cosh L0 0 -i 0 coshL.'
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The hyperbolic functions at this and higher orders tcnd to eonecnt.rate the pert urba-
Ntion energy into regions closer to the two free streamlines. This is where the basic flow

has the greatest depth variation and a concentration of relative vorticity:

-di/dy -cosh y/cosh Lo.

The concentration of perturbations near the fronts is much stronger for wider currents,
flows for which the vorticity ii, at the centre line is much smaller and for which we
know that the disturbances grow much more slowly.

Hence our restriction that the flow has a uniform potential vorticity results in a
coupling between the two free streamlines that becomes very much weaker as L.
becomes larger. On the other hand, it must be remembered that currents with more-
general vorticity distributions are able to be much wider than the Rossby radius based
on the fluid depth H while still having a more uniform distribution of relative vorticity,
thus making larger growth rates possible for wide currents.

6. Laboratory experiments
Apparatus

Currents with an approximately uniform potential vorticity and which were bounded
on each side by a well-defined density front were produced in a rotating container.
In order that the flow be initially uniform along the current, an axisymmetric con-
figuration was used. The free surface of a relatively deep lower layer of dense fluid
then served as a horizontal (geopotential) surface on which the current flowed. This
also greatly reduced the influence of friction below that which would be induced by
a solid boundary. The depth of the lower layer of sodium chloride solution was, in
most experiments, either 28 cm or 40 em. A large annulus with a relatively narrow
gap between its walls was partially immersed in the lower layer, as sketched in figure
7. The annulus was suspended from above and held concentric with the vertical axis
of rotation of the container and stationary in the rotating frame of reference. Three
different annuli were used. One had an inner radius of 19.8 cm and an outer radius
of 23.8 cm, leaving a gap of half-width W = 2.0 cm. The others had mean radii of
20.0 cm and 21.5 cm, with half-widths W = 3.9 cm and Wo = 3.5 cm, respectively.
The outer wall of the rotating container was at a radius of 45 cm.

After the salt solution had come to the desired rotation rate f2 = f, dyed fresh water
was carefully floated onto the free surface inside t he annulus to form t he shallow upper
layer of depth Ho shown in figure 7. The system was then left for at least 30 min to
reach solid-body rotation everywhere. The depth H0 could be determined both by
observing a vertical scale horizontally through the Perspex walls and by measuring
the volume of upper layer fluid placed in the annulus. At a time t = 0 the annulus
was carefully drawn vertically upwards and removed. The subsequent flow was made
visible by the dye in the upper layer and small pellets of paper floating on the free
surface. Photographs were taken with a camera mounted in the rotating reference

frame and time exposures of about one-half of a rotation period were used to obtain
.O streaks. Such streaks, as well as direct observations, revealed no motion before the

annulus was withdrawn. Values of the Coriolis parameter f ranged from 0.38 s-1 to
2.5 s -1 , while the reduced gravity g' lay in the range 0 .2 < g' < 12 cm S-2. The initial
depth H0 of the upper layer was always between 4 and 6 cm. This gave a ratio of layer

*,
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FIGURE 8. Streak photographs showing four stages in the evolution of a laboratory current
with W = 2-0 cm, f = 1.77 s-1 and Y 0 = 1.18 (4 s exposures). Times after withdrawal of the
annulus are (in number of revolutions) : (i) t = 2; (ii) 4; (iii) 6; (iv) 8. The ratio of layer depths
is 0.17. Concentric circles on the bottom of the tank have a 5 cm spacing.

depths in the range 0.1-0.16 or in the range 0. 16-0.2 when the lower layer was 40 cm
'* deep or 28 cm deep, respectively. However, some experiments were also carried out

with shallow lower layers in order to observe the influence upon the flow of the lower
boundary. In these cases the initial ratio of layer depths was between 0.8 and 0.9.

Experimental observations

When the annulus was removed, the buoyant upper-layer fluid first spread radially
toward and away from the axis of rotation by a distance that was measured to be
close to the Rossby radius (g'Ho)if-1. This collapse brought, the flow into an approxi-
mately geostrophic balance (described by (2.11)) within a time scale of orderf-1. An
anticyclonic (clockwise) flow is produced in the outer half of the upper layer and a
cyclonic flow in the inner half, while any motion in the deep lower layer can be neg-
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lected. The axisymmetric geometry requires that both potential vorticity and angular
momentum be conserved by the fluid in each layer during the collapse and that there

*1' is a balance between the buoyancy, Coriolis and centrifugal forces Wnthe final state.
The ratio of centrifugal and Coriolis accelerations is given by U/fr -' (g'H)*/fR,
where R is the radius of the annulus. For most experiments this parameter was less
than 10-1, but it reached 0.2 for experiments with large Rossby radii. Therefore the

*1 geostrophic basic flow assumed in the analysis in previous sections is only approxi-
'.4 mately realized.

Even before the geostrophic collapse was complete, rapidly growing billows
(believed to be Kelvin-Helmholtz billows) with length scales of the order of 2 cm
appeared on each edge of many of the currents. However, these disturbances also
dissipated rapidly (often before the first photograph could be taken), presumably
mixing some of the fluid near the fronts, and the current again became axisymmetric

": for a time. Later, but always within two or three revolution periods, disturbances
with much larger downstream length scales appeared on the otherwise uniform flow.
Subsequently, the current always broke up into a chain of eddies within five to ten
revolutions.

If we assume that the deep bottom layer is stationary and that there is no mixing
between the layers during the collapsing phase, then the laboratory current is described
by the two dimensionless parameters fW 0/(g'Ho)i and W/H. In order to relate the
parameters before and after the initial collapse, we write W = A/2Ho, where A is the
cross-sectional area of the current, and define

" "f W f A

YO o -" = 2Ho(Ho). (6.1)

By integrating the hyperbolic depth profile (5.5), the area A can be found in terms of
Lo =f W/(g'Ho)f (where W is the half-width after collapse). Then (6.1) gives

4% = L0- tanh Lo. (6.2)

Then the final width Lo -) 0 when Yo -- 0, while L0 2-. Y 0 + 1 when Y o > 1.
In figure 8 are shown four stages during the evolution of a current that was formed

when the initial Rossby radius wasequal to the half-width TIoof the annulus (. = 1-18).
In (i) the flow is largely axisymmetric and the relative vorticity is distributed through-
out the width of the curent. In (ii) the streaks reveal that regions of closed anti-
cyclonic circulation have appeared near the centre line of the current. The fronts
(edges of the dyed fluid) also reveal a wavelike structure. There appears to be some
meandering away from the initial centre line as well as variations in current width.
Both become more obvious in (iii), where the flow appears to be qualitatively very
similar to that sketched in figure 4(c), except that at this large amplitude there are
closed circulations within the deeper sections of the current. In this case there are
nine or ten waves around the annulus. In (iv), individual eddies have brok,,n off from
their neighbours and the flow become a broad region of anticyclonic eddies. These
subsequently decay very slowly due to friction.

In figure 9 is shown a similar sequence in the evolution of a current for which the
initial Rossby radius was 1.561 0 (Y = 0.74). Frame (i) again shows an almost axi-
symmetric flow. However, small 'cats-eve'-shaped disturbances are alrcady visible
near the centre line (y = 0). Only one revolution later (ii) these disturbances influence

-.a
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i (O (ii)

-. FiouRE 9. Streak photographs showing t he evolution of a laboratory current with TV, - 2.0 era,
i f =f I AI a- ', and Ye° = 0.74 (4 s exposures). Times after withdrawal of the annulus are (in

number of revolutions): {i) t = 3; (ii) 4; (iii) 6; (iv') 8. The ratio of layer depthis is 0.17.

€ the whole flow. In this case there are seven waves around the annulus and both the
" varicose and meandering nature of the flow is visible. In (iii) andi (iv) the anticyclonic

: eddies again develop and break up the current.
~For contrast, figure 10 shows the evolution of a current that is much wider than

,- the Rossby radius (Yf = 4"0). As for the experiments shown in figures 8 and 9, the
initial ratio of layer depths is 0. 17. In this case disturbances could be seen first at the
edges of the current (i) and rapidly grew in amplitud(e to take the form of waves that
'break' on their upstream side (ii). The two front,; then appear to behave indepen-
dently. Vortices of opposite sign develop in the lower lay' er behind each 'breaking'
crest (iii) and can lead to the format ion of vortex pairs at each edge of the flow'. The

., resulting turbulent current is sho'wn in (iv'). \When the ratio of layer depths was less
'.'i than 0.2 this apparently two-layer flow occurred fo~r all currents withy,¢ > 2.

~~For large dlept h ratios, t he transition bet ween the two kinds of behaviour occurs

".
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FIGURE 10. Streak photographs showing the evolution of a laboratory current with Wo = 39 cm,
f = 2.87 s- 1 and Yo 4.0 (4 s exposures). Times in number of revolutions after withdrawal of
the annulus are (i) - 3; (ii) 4; (iii) 6; (iv) 12. The ratio of layer depths is 0.17.

near Yo = 1. Figure 11 shows two stages in the evolution of a current with.? 0 = 1.07
and a ratio of layer depths 0.84. The disturbances still appear to be dominated by a
coupling between the two density fronts. The waves do not 'break' and no cyclonic
eddies develop in the lower layer. On the other hand, when Y = 3.7 and the depth
ratio is 0.9, each edge behaves independently. This case is shown in figure 12, where
the initial axisymmetric current develops small-scale breaking waves on each edge.

In each experiment the number n of waves that appeared around the annular
current were counted.t This wavenumber increased linearly with Yo for each annulus.
The wavelength was then calculated from A = 2rR/n, where R is usually the mean
radius of the annulus used. For'wider' currents (Y 0 > 2), though, there was a smaller

6number of waves on the inner edge of the current than on the outer edge. However,

t Measurements of waweletigth were always taken after the disappearance of aniy small-scale
Kelvin Helmholtz billows if t lie two length scales were distinctly separated.

4
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FiSR t. The evolution of a laboratory current with a shallow lower layer. W, =2-0 cm,

f -=-4s1 1.07 and the ratio of layer depthis is 0-84. Times in number of revolutions

atrwithdrawal of the annulus are (i) f 2; (ii) 4.
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-. 4.

(_i() (i )

-': - (ii) (iv)

Fi'uRE 12. The evolution of a laboratory current with a shallow lower layer. W - 3.9 em,
f = 1.77 s - 1, Ye = 3.7 and the ratio of layer depths is 0.9. Times in number of revolutions after
withdrawal of the annulus are (i) t = 1; (ii) 3; (iii) 5; (iv) 8.

using the appropriate radius of each edge after the initial collapse yielded two very
similar wavelengths. A more serious problem at large YO, was that, the wavelengths
increased with time, and this may be due to a similarity of the scales of Kelvin-
Helmholtz and rotationally dominated disturbances.

The dimensionless wavelengthfA/(g'Ho)i is plotted on figure 13, where the symbols
indicate the annulus width and ratio of layer depths. Where the wavelength increased
with time the two detectable extremes are plotted and connected by a vertical line.
The computed wavelength 21/k. (from figure 5b) is also plotted and the upper scale
of the figure shows the current width Lo after collapse as given by (6.2). For Y, < I
(L o < 2) the observed wavelength increases slowly with YO in roughly the same way

. .! as does the computed wavelength, but is almost a factor of two smaller. At Y0 > 2
the observed instability has a roughly constant length scale, while the computed
wavelength for the one-layer instability then increases rapidly with current width.
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Fiomw 13. The observed dimensionless wavelength (bsed on the Rosby radius before geo-
strophic adjustment) asa function of the initial width of the current, Y. f I s/(g'H.). Data
indicate the annulus uaed and the ratio of layer depths: 0, W, = 2.0 cm and depth ratio
S 02; 0, Wg - 3"5 or 3.9cm and depth ratio < 0.2; x, depth ratio 0.8-0.9. The upper scale
is the width LO after geotrophic adjustment (calculated from . and (6.2)) and the computed
wavelength 2v/k. is plotted on this scale.

The growth rates of the observed disturbances are difficult to quantify because
their appearance and growth at very small amplitude is poorly defined. However,
their appearance within one to two revolutions after the annulus was withdrawn
implies a growth rate IkcJ - 0(4 x 10-2). This lower limit is consistent with the
computed growth rate on figure 5 (b) for YO < 1. A more clearly defined time scale,
and one that is of importance in oceanographic observations, is the period required
for the axisymmetric flow to break up into isolated eddies whose circulations have
pinched off from their neighbours. For those experiments with layer-depth ratios less
than 0.2 this time scale was always close to 5 or 6 rotation periods, but it was as small
as three revolutions (at Y = 1) when the depth ratio was large.

Discussion of the experimental results

The data on figure 13 are presented again on figure 14, along with the computed wave-
length 21r/cm for the most rapidly growing mode described in § 5. However, this time

the wavelengths are normalized by the Rossby radius based on the maximum depth
H of the current after its collapse to geostrophic balance. This depth is calculated from
(5.2) after finding the balanced width L0 from (6.2), and assumes that the initially
uniform potential vorticity remained after the collapse. To well within the scatter
of the data, the measured wavelength A is a constant multiple of the Rossby radius:
fA/(g'H)i = 7.4 + 1.2.

For Y 0 < 2 we have already described the qualitative appearance of the growing

.
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FIGoUR 14. The data of figure 13 but with the wavelength renormalized using the calculated
Roesby radius in the state of geostrophic balance (assuming conservation of potential vorticity).
The data have a mean of fA/(g'H)k - 74 ± 1.3 (broken line), which corresponds to the wave-
number c - 0-85±0"15. The computed wavelength 2w/e. for the coupled mode on a current
with uniform potential vorticity is also plotted (solid line). The dotted line shows the computed
wavelength (against the upper scale) of the coupled mode with maximum growth rate for the
profile (6.3), which has a varying potential vorticity. The dashed line is the computed wave-
length of the mode attached to a single front for the same profile (6.3).

disturbances, and, for a sufficiently deep lower layer, this appears to be identical to
that predicted for the one-layer instability. The two edges of the current couple to-
gether and give rise to both meandering and varicose structures which are in radians
out of phase. The growing disturbances are stationary and large anticyclonic eddies
develop from the wider and deeper sections of the wave. The computed and observed
growth rates are also consistent with each other. On the other hand, no rapid change
of growth rate with current width Lo could be detected, and the measured wave-
lengths are smaller than those pred 'ted. These discrepancies we attribute largely to
the simultaneous instability of at least one ot*.er mode, a mode which becomes domi-
nant only at larger current widths (Y 0 > 2), and which appears to have a length scale
close to 2fr deformation radii and growth rates of order 10-lI0 - 1. This mode is
discussed below, There are also a number of other factors that may possibly influence
the observed wavelength at Y9 < 1. First, the formation of a 'narrow current in our
experiments requires that the upper layer have a large Rossby radius of defort ation,
which means that the collapse to geostrophic balance involves an extei. 4ive, rapid
spreading of the buoyant fluid, leaving a rather shallow zurrent. Both mixing by
Kelvin-Helmholtz billows (which could be clearly seen in cin6 films) and frict' ,, may
then affect the vorticity and current depth throughout the width of the undisturbed
flow. Alteration of the potential vorticity profile can in itself lead to only small changes
in the most unstable wavelength at L0 < 1, as the behaviour must then approach the



372 R. W. Griffth, P. D. Killuorth and Al. K. tcrn

same limit of zero potential vorticity. To illustrate this with a quantitative example
we have chosen the convenient (but otherwise arbitrary) depth profile

ys coshyIjcs- 0 '(0.3)

and computed the wavelength and growth rate of the most unstable mode that
couples the two edges of the current. This wavelength is plotted on figure 14 (dotted
line), while the dimensionless growth rate is somewhat greater than that found for the
uniform potential vorticity profile (kc = 0.21 at L0 = 1).

Another result of the dissipation of vorticity during the collapsing phase is a small
reduction of the current depth H. This would imply that we have underestimated the
value of the observed dimensionless wavelengthfA/(g'H)i on figure 14 (and similarly
overestimated the predicted wavelength on figure 13). Other factors that we have
neglected are non-zero perturbation velocities in the finite lower layer and interfacial
friction, both of which may have a direct influence upon the energy balance in the

, growing disturbances.
The two edges of the current are again strongly coupled when .0 < 1, and the ratio

of layer depths is close to one. However, the structure of disturbances is different from
that at small depth ratios, with the current showing less tendency to meander, and
the growth rate is noticeably greater. In this case, the lower layer cannot be considered
stationary, since its depth changes significantly during the collapse to geostrophic

* - equilibrium. Conservation of potential vorticity implies that the fluid velocity in this
layer is in the opposite direction to that in the upper layer, and this must be expected
to influence the form of the coupling between the two density fronts.

At Yo > 2, with all the depth ratios used, the collapse to geostrophy has little
influence upon the fluid near the centre line. Under these conditions we observe a
clear qualitative difference in the instability. Each front is observed to behave inde-
pendently and develop waves, which have a length scale determined by the Rossby

': radius. Furthermore, the growth rate of the coupled, one-layer instability at . > 2
is predicted to be more than an order of magnitude smaller than at Yo = 1,t while
the length scale is predicted to increase exponentially with Y.. Hence we conclude
that another mode of instability is present for £o > 2. However, we are uncertain of
the nature of this second mode. There are two possibilities: it may be a mode in
which the second layer and the lower boundary play an important role, or else it may
be another unstable mode (other than the one discussed in this paper) that is described
by the single-layer equations (2.15)-(2.17).

The particular solution to the perturbation equations (2.15)-(2.17) that is discussed
in §§ 3, 4 and 5 has the leading-order phase velocity co = U, and represents an unstable
coupling of the two free streamlines. However, we find numerically that there can be
other unstable solutions with larger wavenumbers than those for the coupled-front
mode. Although these other modes are not yet fully understood, we do know that
each is concentrated close to one of the free streamlines and, to be unstable, requires
a non-zero gradient of potential vorticity. Since the laboratory currents do involve a

f The expression (4.26) shows that a decrease of the growth rate should be expected for any
profile that becomes steadily flatter near the critical layer; the argument is not limited purely
to constant -potent ial-vorticity profiles.

-4
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variation of potential vorticity near their edges (due to mixing and friction), the one-
layer model might therefore be able to describe the observed mode of instability for
wide currents as well as the coupled mode observed for narrow currents. For the
particular profile (6.3), which was chosen as a relatively simple variation on the profile
(5.3) and which has a varying potential vorticity, numerical solutions show that the
wavelength of the new frontal mode with maximum growth rate is a constant multiple
of the Rossby radius. This result is plotted on figure 14 (broken line), where the pre-
dicted wavelength can be seen to be much smaller than those observed. However, it

* may be that the preferred length scale is determined by the width of the region of large
shear at the current edge. This in turn is determined, in the experiments, by the Rossby
radius (g'Ho)i/f, and by mixing. Before useful conclusions can be drawn it will be
necessary to investigate further profiles numerically, and to find a method by which
the potential-vorticity profile of a laboratory current can be determined to a sufficient
accuracy. At present we can only approximate this profile by assuming conservation
of potential vorticity during the collapse to geostrophic balance.

The observed mode of instability for wide currents may also require the presence
of a lower layer of finite depth. On the basis of previous quasi-geostrophic theories,
conditions at Lo > 1 are well-suited to the appearance of a two-layer baroclinic in-
stability. Since L 2 (after the initial collapse) is a Froude number of the flow, all the
laboratory currents should be baroclinically unstable, and larger values of Lo will
give rise to baroclinic waves with larger growth rates. In experiments similar to those
reported in this article, Griffiths & Linden (1981) have investigated unstable waves
on an isolated two-layer vortex that is bounded by a sharp density front. They found
that each growing wave led to the formation of a cyclone-anticyclone pair when the
ratio of layer depths was greater than 10-1. This behaviour is similar to that seen in
figures 10 and 12, where disturbances grow independently on each edge of the wide
currents, the lower layer plays a visible role, and a number of vortex pairs appear.
Griffiths & Linden also detected a variation of wavelength with the ratio of layer
depths. While no such dependence has been established conclusively for the length
scales in the experiments reported here, the depth ratio does appear to influence
significantly the value of the current width Y 0 at which the two-layer instability
becomes dominant over the one-layer, coupled instability. This transition occurs at
o = 2 for depth ratios near 0.2, but at- o = 1.2 for depth ratios near one. Griffiths &

Linden also observed that when the layer depths are comparable, velocities within
'i the cyclonic eddies, which extended throughout the depth of the lower layer, were

comparable to those in the upper layer anticyclones. Hence the dynamical role of the
second layer may well be important for the wide currents and at the large depth ratios
in the present experiments.

7. Conclusions
A single-layer model of a gravity current that is bounded by two free streamlines

on a uniformly sloping surface predicts that such a flow is unstable. The influence of
*vanishing layer depth and large inertial effects near the fronts are included. Normal

modes are stable in the limit of infinitely large downstream length scales, but finite
wavelengths are unstable. For currents that are symmetric about their midpoint,
perturbations are simply advected with the mean velocity of the fluid. A combination
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of meandering and 'varicose' modes with a phase difference of in radians releases
kinetic and potential energy from the basic current. When the flow has zero potential

%% vorticity, the mode with maximum growth rate is predicted to have the wavelength
7.9(g'110)if-1, where If is the maximum depth of the current|, amid an e-folding time
of (0-14f)-', or 0.57 rotation periods. Flows with finite (uniform) potential vortieity
are characterized by the variable length scale L. = f W/(g'110 )i, where W is the half-
width of the current and H0 is a depth scale that characterizes the potential vorticity.
The most rapidly growing mode in this case has a wavelength that increases with Lo
and a growth rate that decreases rapidly when L0 > 1. Thus, in contrast to the well-
known Rayleigh inflection theorem for quasi-geostrophic flows, we have demonstrated
an instability that does not require an extremum (or even a gradient) of potential
vorticity. It seems likely that the presence of significant inertial forces might similarly
destabilize other geophysical flows.

A second type of unstable solution to the single-layer equations has also been found,
but has not been discussed here. In this second mode of instability, perturbations are
linked to one edge of the current, and require a non-zero potential vorticity gradient
if they are to grow. As this mode may also be of geophysical significance (perhaps even

* . in the case of a single isolated density front), it will be described in another paper.
Our laboratory experiments with a current at the free surface of a rather deep lower

layer confirm that a current with two fronts (and nearly uniform potential vorticity)
is unstable. The observed structure of growing disturbances, when the current width
L0 < 3, corresponds closely to that predicted. The velocity perturbations first form
'cat's-eye' structures at the centre line of the current, and the two edges co-operate
to form eventually a train of large anticyclonic eddies. The experiments also indicate
that the single-layer instability due to the coupling of the two free streamlines is
likely to continue to be important when the lower layer is relatively shallow, providing
that L0 < 2.

A different mode of instability appears to make the dominant contribution to the
release of energy from the laboratory currents when L0 > 3. Each edge of the upper
layer then behaves independently and the lower layer plays a visible role. However,
because the observed non-dimensional wavelength is independent of the theoretical
parameter (current width) over the full range of parameters used, an unambiguous
comparison of the experimental observations with theoretical predictions remains
somewhat unsatisfactory.

The flow configuration that we have considered is somewhat similar to that of the
Denmark Strait overflow, in which large, energetic oscillations are detected. Smith
(1976) presents an intensive discussion of the data for this flow, and finds that the
horizontal components of velocity are in quadrature, and there is a distinct cross-
stream component of perturbation heat flux which has a uniform sign but varies in
magnitude across the stream. The disturbances are attributed to a two-layer baro-
clinic instability and compared with the predictions of a quasi-geostrophic model.
However, the presence of velocity components in quadrature and a cross-stream phase
lag in the cross-stream velocity of tip to 90', may also be consistent with instability
due to a coupling of the two edges of the dense current. The only mitigating factor in

, this hypothesis is that the cross-stream heat flux in the one-layer model, by (4.30),
varies as d, and inerefore takes both signs across the stream. However, an asymmetric
depth profile could well lead to a very small region of reverse ft near one edge, so that

;4
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detection of this area might be difficult. Further knowledge of the mean vorticity
distribution and the influence of bottom curvature is necessary if the two instabilities
ar to be compared.
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Appendix A. A Rayleigh integral argument

-. 5 The following alternative derivation of the leading term in the growth rate may be
found a helpful complement to the matching technique used in § 4 and appendix B,
in so far as the assumptions on the structure of the eigenfunctions are apparently less
severe.

From (2.15)-(2.17) and (4.1) it follows that, correct to O(e'), satisfies

where = c- U. This is similar to (4.11). Division by (9 + N,)$ and integration yields

"-': ~ ~ ~ ~ ~ ~ ~ ~ i -;- + (-L JL , O(es). (A 2)

Equation (A 2) is to be solved subject to

.(-L) =i 0, (A 3)

and a condition at y = + L. To obtain this, note that integration of (2.17) gives

-. L S dy f Ldy(O+ J), (A 4)

or, after use of (2.16),

-L L (A)
and so

... 60 (L) 0 dy hli- c) O, (A 6)
"" -L

which is equivalent to (4.21).
It is readily seen that, when e = 0, a solution to (A 1), (A 3) and (A 6) is

=00o- , c=U (or 6=0), (A7)

where a is an arbitrary amplitude factor. We shall now obtain an integral expression
for the next term in c, i.e. 6. By integrating (A 2) for 0, and using (A 7) for Oh- 1 in the
integral, we obtain

a+ fJ-L J f-L+

= 0() + O(e 2 ), (A 8)
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where a is taken as v(- L) (i + NY(- L))- ' for convenience. Substitution in condition
(A 6) then gives

' j2L+limJL (a+ NY) dvJ iTvIdhj) = -eJf L yN, (A 9)

to leading order. Reversing the order of integration in (A 9) gives

0' 2L+lim L '3, [6(L-y)-]dy = - s dyXi2. (A 10)
1 -0fL _-L

The term in 9 inside the integral is negligible, and by rearrangement we obtain

02L- lim L-d lira L = -6 Ls dy NOl. (A 11)
1 Z-0oJ-L e*) f _L-C-+I ) -L

It is readily shown that the first two terms inside the brackets combine to give a
negligible term of order a. Thus

C'fLL dYN62

CL A.du (A 12)

The denominator in (A 12) can be written as

C'L Jidy _ YL yd (fc CL\ ) y+(Yc+' dy (A 13)
-L7 +( -x - J -L( )2 W L + a)2 + ( - )V

where 8 -+ 0, and ye again represents (one of) the critical layer(s). For 6 tending to
zero, the right-hand side of (A 13) becomes

f C-fL )id1/a~ [Nc +0(712)] d,*~~~ T d l+(f_ c-8+ 'i L dy u+It I+...-..

.:+ 8o+) + Y'_: ,, ,,, )'I e ) (I,, )•

(A 14)

Now as 8 -+ 0, integrals of nr(n - a--I)-r tend to 26 - 0, plus correction terms of order
a which also are negligible. Hence

li C dy _(Cfca Ad1  -=Y i~[og 8.. log( 8)])( 15)2 u2 e 2
lim 7J -T-,+hy 2 =. +_ 4) + L" 8i*y(AV-m0-, f -r -L ( ++,) f , +J,

= Fpf Ady _ iii~yh. (A 16)

*: taking log(-8)ff log 8- insgn (fUtY) as before. Hence the result (4.26) for as is re-
covered.
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It is shown that a coastal density current in a rotating system is unstable to downstream
wave disturbances when the mean potential vorticity increases towards the (vertically-walled)
coast and when the mean current vanishes there. Other new instability modes are also found
which do not require the potential vorticity extremum of quasi-geostrophic theory. All the
instabilities in our equivalent one-layer model release mean kinetic energy and most of them
release mean potential energy, but an increase of the latter can occur under certain
circumstances.

Specifically, it is shown (a) that mean flows close to uniform potential vorticity can be
unstable to disturbances of infinite wavelength (and hence also for finite wavelengths) even
for monotonic potential voonicity distributions, and lb) that all mean flows which vanish at
the wall and for which the potential vorticity has a maximum but not an extremum at the
wall are unstable to waves of finite length. A logical extension shows that the second half of
the latter criterion may be relaxed, in fact. The paper concludes with a discussion of the
applications to recent laboratory experiments.

1. INTRO)DUCTION

Horizontal density differences near the coast of a rotating fluid tend to
produce geostrophic flow parallel to the coast, and cross-stream spreading
tends to be inhibited by the Coriolis force. There are many examples of
such currents in the ocean, e.g. the East Greenland current, carrying water
of Arctic origin southwards, and the West Spitzbergen current carrying
Atlantic water northwards into the Arctic. Coastal currents, involving
water denser than its surroundings. can also occur at the ocean floor: e.g..
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the overflow of dense Greenland-Iceland sea water at the bottom of the.... Denmark Strait into the Atlantic (Mann, 1969; Smith, 1976). All these

coastal currents are bounded away from the coastline by a front, where an
isopycnal intersects the ocean surfacc (or floor); such a front can he
thought of as a boundary for thc current.

Many observations of coastal currents also show them to be prone to
large disturbances or instabilities, and this has prompted several
laboratory investigations of the instabilities of simple fronts and coastal
currents (Stern, 1980; Stern, Whitehead and Hua, 1982; Griffiths and
Linden, 1981 a, b). A variety of instabilities for these fronts has been found:
breaking waves, wedges, bores and cyclone-anticyclone vortex pairs.

Both the experiments and the observations have frequently been
interpreted in the framework of the classical quasi-geostrophic instability
theory, despite the fact that the limits of validity of the latter are exceeded
for a "strong" front. The latter consists of isopycnal layers with large
variations in vertical thickness, and lateral shears comparable with the
Coriolis parameter. Some support for this appeal to quasi-geostrophic
theory can be found in the "strong" frontal model of Orlanski (1968),
which consists of two active density layers separated by a uniformly
sloping interface. A "generic" connection can be made between the
unstable modes in this problem and those in the simpler quasi-geostrophic
theories. But there is no lateral shear above and below the interfacial
discontinuity in Orlanski's model, and consequently it may suppress new
modes in which a distributed lateral shear is important, as well as the
lateral density gradients. This is revealed by the following investigation of
the instability of a single active layer with a continuous shear. In the
context of the quasi-geostrophic theory, such a model should exhibit no
instability unless the undisturbed potential vorticity has an extremum. All
the modes discussed in this paper violate this condition, and the
implication is that the quasi-geostrophic theory filters out these modes.

Although we shall concentrate on the dynamics of a single layer, this
: does not mean that the effect of the second layer is negligible in the

applications mentioned above. But there may very well be a tendency, in
the interpretation of the data, to exaggerate the dynamical significance of
the "baroclinic mode" by extrapolating quasi-geostrophic theory too far.
A better starting point for the interpretation of many (complex) frontal
problems may be a one-layer ageostrophic model, which is to he
subsequently modified by considering the coupling with the other layer(s).

Be this as it may, we have undertaken a series of analytical studies of an
equivalent one-layer model. The first one: Griffiths, Killworth and Stern
(1982), cited as GKS hereafter, considered a density current with two free
fronts located on the same horizontal boundary. This problem is simpler
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than the one free front studied herein! GKS found that for any
distribution of vorticity, the double front was unstable to a growing mode
which coupled the fronts through a combination of varicose and
meandering disturbances.t The disturbance grew by transferring mean
potential energy to disturbance potential energy, and mean kinetic energy
to disturbance kinetic energy.

In this paper we examine the general stability of a coastal current.
bounded on one side by a rigid boundary, and on the other by a front. A
reduced gravity model will again be used. Because the mechanisms of
coupling the two fronts in GKS is now removed by the insertion of a wall,
we can anticipate a stabilization of the flow. However, we shall show that
at least two modes of instability can occur (with a third mode, relevant to
an isolated front far from any wall, to be discussed in a later paper). The
first of these is a longwave instability which can occur on flows of almost
uniform potential vorticity, even if the vorticity varies monotonically
across the current. We shall show that instabilities exist provided the
width of the current exceeds a critical value, but a further necessary
condition is that a mean-flow reversal occurs. This model is therefore
artificial, but we note that it is possible for this instability to increase the
mean potential energy of the flow.

Another mode of instability is found where there is no flow reversal,
and in the realistic case when the mean flow is at rest at the wall. For this
case, instability occurs where the potential vorticity increases towards the
wall. Flows possessing reversals also have this mode, with growth rates
typically greater than for flows of uniform direction. This instability
possesses similar energetics to that in GKS, but rather weaker due to
stabilization by the wall.

Section 2 of the paper describes the one-layer model used, and the mean
flow. Section 3 proves the first main result, concerning infinitely long
growing waves on a mean flow close to uniform potential vorticity, and
discusses the energetics involved. Section 4 proves the second result,
concerning long growing waves on a mean flow which vanishes at the
wall: this necessitates some straightforward but tedious matched
asymptotics. This section again discusses the energetics. Section 5
gives a qualitative discussion, based partially on computed results for
non-!ong waves, of the dependence of the instabilities on current width.
Section 6 discusses the applications of the theory to laboratory
experiments.

'There are other disturbances possible; the thrust of GKS was to demonstrate that a
general class of instability must exist on such a flow.
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2. FORMULATION

We consider the configuration shown in Figure I in which a fluid of
uniform density Pt flows above an infinite fluid of density 1),>Pt. The
undisturbed flow in the upper layer is parallel to the x-axis, and is
bounded by a front at y=O (where the depth of the upper fluid vanishes)
and by a rigid vertical wall at y = L. The relative depth in the lower layer

p> is assumed to be sufficiently great so that the velocities and pressure
gradients produced in it are negligible compared with those in the upper
layer. Consequently the momentum and continuity equations are (for
shallow water)

u, + uu. + vu,-fv= -gh., (2.1)

V, + uv, + vvY + fu = - g'h (2.2)

h, + (uh)" + (vh), = 0, (2.3)

where (u, v) are the (x, y) components of velocity, t represents time, f is the

Coriolis parameter, and g'=g(P2 -P0 1)/P2 is the reduced gravity. We
choose non-dimensionalisation, following GKS, which will be convenient
for motions with x-variations long compared with the radius of
deformation a=(gH)"1f ', where H is taken as the (upper layer) fluid
depth at the wall. Nondimensional values are defined by

• x=x*-la, y=y*a, t=t%: f I

uu*(g'H)' 12, v= v*g(g'H)/Z, h=h*H, (2.4)

'9,

FIGURE I The configuration for the one-layer problem discussed in this paper.

---------------------------------- ---- ,.-
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where the starred quantities are nondimensional and the downstream
" lengthscale is a-'a. Analytically we shall be concerned with r small (to

demonstrate stability). However, no restriction is placed on i: in the
scaling, or in numerical solutions. Upon dropping the asterisks, Eqs. (2.1)-
(2.3) become

u, + uu,, + v(u - )=- h, (2.5)

8 1(v, + uv, + vvY) + u= - hy, (2.6)

h, + (uh), + (vh), = 0, (2.7)

and the mean flow, denoted by a bar, depends only on y and satisfies the
geostrophic balance

IT -0, ui= -h, (2.8), (2.9)

iFi=o, y=o, (2.10)

-i=i, y=L. (2.11)

The potential vorticity of the mean flow is defined by

P- - i)/' (0 + Klk (2.12)

We impose a small perturbation of the form

" (u', v', h') = (d,, h) exp i(x - .t)

on the mean flow, where c is the phase velocity of the perturbations.
Unstable modes will have Im(c)> 0, with growth rate 6 lm (c), since a plays
the role of a wavenumber. The linearised equations for these perturbations
are then, dropping tildes,

(ai-c)u +( -i,)iv+h=0, (2.13)

u+& 2(ii-c)iv+h,:=0, (2.14)

Fiu-(iv), + (i- c)h 0. (2.15)

By solving (2.13) and (2.14) for u and iv in terms of h and substituting in
(2.15), we obtain a single equation for h, the simplification of which is

[iQ 'hy] + h[l -e2hKQ '-Q -'),(ii-c) I]=O. (2.16)

i
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where

Q ,I:2 - • +ti7. (2.17)

Thc wall boundary condition v(L)=0 for (2.16) becomes

(6-c)h,-h=0, y=L (2.18)

when (2.13), (2.14) are used. The boundary condition at the front can be
obtained by the requirement that (2.15) be well-behaved when F vanishes.
or

it= -(ti-c)h/a, y=O. (2.19)

Using (2.13) (2.14). this implies

h,=h[Qd ' +(ii-() y]. = [if Q(0)*0]. (2.20)

In thc special but important case where Q(0)=0, we have

(ti-c)h,-h=O, y=O [if Q(0)=0]. (2.21)

This condition applies for all finite P(y) when c=0. For the case where the
mean potential vorticity P0 = -Q/l also is constant, (2.16) reduces to
h,-P 0h=O, and the solution satisfying (2.18)-(2.21) gives two real
eigenvalues c. This does not mean, of course, that waves of finite length
are stable.

3. LONGWAVE INSTABILITY OF PROFILES WITH NEARLY
UNIFORM POTENTIAL VORTICITY

a) Demonstration of instability

In this section we shall prove that there exist mean flows close to uniform
potential vorticity which are unstable to disturbances of infinite wavelength,
even if the vorticity distribution remains monotonic. An immediate corollary,
following an expansion for small &, is that such flows are also unstable to
waves of finite wavelength.

To obtain this result, we first set c to zeic in (2.16). Q then becomes
equal to the negative absolute vorticity and (2.16) simplifies to

(h,P-)=h[l -PP-2 (ti-c)- '], (3.1)

. where P is the mean potential vorticity defined by (2.12). Multiplication of
(3.1) by h*, where an asterisk now denotes a complex conjugate, and

"4

.4
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integrating from 0 to L. gives

Regardless of whether P vanishes at y=O or not, the imaginary part of
(3.2) yields the same result after use of the boundary conditions (2.18).
(2.21) for h., namely

Tm[1I2 P~i cM -Tm J [hIP/(z- c)] dy, (3.3)
0

or

lm~) [h1/P~i- )2~ =- m(c) j (1hI 2 ~P i _C1
2 )dy. (3.4)

0

When P = P0 is constant [corresponding to mean flows h =ho(y), u
=uo(y)], the hyperbolic solutions of (3.1) yield real eigenvalues c=c0 , and
(as proved later), ii-c 0 =0 at some Y = y in 0< y < L. We also assumet
that for mean flows with potential vorticity

h'=I 0 +,fF, P=Po+pUP(y) P<-l, (3.5)

(h, c) exists such that, for p --+,

hcop, C-C+ic1  C0 +P(c 1 ,.+ic1 8 ). (3.6)

(In fact both h and c may be expressed to f(p) as a simple power series
expansion; terms in logp enter at higher orders in the expansion.)
Substituting (3.5), -(3.6) into (3.4) and taking the limit as j-.O, with
juc1 > 0, yields

L
= -1 2 cj Lim j(h~p,1 /p~jziCI2)dy

0O 0

= -,U 2c1 1Pt,(y)h1(jp 0 2 Lim f ti,2(vX-v') v 2 +pU2c~ C d2
0-0 0

= -pj(,h jq(,j (3.7)

tThis assumption has been verified b) detailed matched asymptotic expansions similar in
nature to those in GKS. The details are tedious and unenlightening, and are omitted here.
However, such calculations are always necessary when some form of the argument in this
paper is used, in order to show the existence of the assumed etgenfunctions.
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or

=-hO'( y,) P ,(,)P "yIhjiCol - 2 ]L. (3.8)

This is an expression for Im(c) to first order in y. where p is a measure of
the potential vorticity gradient. Now h,~ satisfies (3.1) with P, replacing P.~
i.e.

hoy"= P011, (a1-( 0O)h0 = h0, y=0,L. (3.9)

The first of these may be written as

O- Poh2)/dy = 0,

so that the end point contribution in (3.8) becomes

[h~(a-CO) -2] = [h2,] L P0 h]L,(.0

giving

Cii -jyh Y,7/'FO) ] (3.11)

Since c1j >0 was assumed, it follows that for long-wave instability P17(yj
must be positive (negative) according as [h']10 is negative (positive).

Before evaluating (3.11), it may be helpful to give a qualitative
demonstration of the crucial point: that (ti- co) can vanish in 0 < y < L for
certain values of the parameters (PO, L). The solution of (2.12) is

Ai~y) = PJ -1(1 - cosh P!'21y) -tA0)p - 112 sinh P'1
12y, (3.12)

and I~=I at y =L implies that

U10) - "{I-P 0 ( - cosh p I 2L)}/sinh P I '2L. (3.13)

Hence

ulL)= -I(L)-= P _ 1/2 sinh p012 L + zu) cosh P,'21L. (3.14)

It is clear that values of (P0 , L) can be found for which ti(L) vanishes. In
such cases, co - 0 is an eigenvalue of (3.9), with eigenfunctions h, =u (a fact
which will be generalized and used again later). Thus for these (PO, L)
values. u(0) - c0 <zL)- c = 0, assuming Li to be monotonic. The critical
layer is at y=L for points on this (P0 ,L) curve, and therefore points

A.

6%

- - - - - - -
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slightly on one side of this curve will yield values of t(L)-c,) which are
positive. Since a(0)-c' is still negative, the critical point y, will now lie
slightly inside (0, L), and this completes the simple argument.

To evaluate (3.11) we need co and y, as functions of L and P0, together
with ho. Now the solution of (3.9) is

i, = sinh j)l,"t + fl cosh P1/2 t '. (3.15)

where f# is a constant of integration. Substitution into the boundary
conditions and elimination of f# yields a quadratic for co:

€"" ~~~~~~~~[i(L) - ,]o.j 2coh P," L + Po2si nh pt2L'[(0- ]}

=sinh p( 2 L+ P.] 2[ (0)-c']cosh P' 2L, (3.16)

which can be solved numerically using (3.13), (3.14); fP is then found from a
boundary condition. Of particular interest are the critical values Lc, i.e. the
values of L for which either u (L)-c, vanishes or uO) -c, vanishes. From
(3.16), if ti(L)=co then

Co= t(L)= ui(0) +(sinh P '2L)/P' 2 cosh PA!2L, (3.17)

A..

while if ti(O)= co then

Co= u(O)= u(L)-(sinh Po'2 L)I/P1
2 cosh Pt' 2L. (3.1 8)

Clearly (3.17), (3.18) give the same relationship between P, and L. after
* some algebra this reduces to

' 1, = L, = P0 " 2 cosh - [ 1,(lI - P,)] . .9

Instability can only occur, then, for values of L on one side of L,: this is
easily seen to involve L>L,. for instability. The value (3.19) for L, is also
the maximum width for a parallel current upstream of a wedge solution.
as discussed by Stern, Whitehead and Hua (1982).

The curve (3.19) is shown in Figure 2a. For small P,,. L, 2'
+(5.2' ";21 P , and L,--A1 as P0-- 1. So the condition for long-wa"e
instability is thai L > L,Po)> 21 2 in other words the width of the current
must at least exceed 2 2 radii of deformation for instability. A little
algebra shows that uil.) vanishes when L=/.,.. and is positive when L> I,.

."

°;. . .
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FIGURE 2 Details of the ongwave instability of Section 3. (a) the critical width L of the
current, as a function of basic potential vorticity Pg (b) the phase speeds c+, c as functions
of L for Pow0.05. (c) the growth rate m(c ) P e as functions of L for the c solutions

h(upper quadrant) and c solutions (lower quadrant) r

3.,Since d ) is always negative, it implies that long-wave instability is

cTre isroneowth rge r grth owuthiodge) bt) epiensuial pone

associated with mean flows which possess flow reversals.t

make ngaot evrywhe Ho weve, souchadfction muste tak~eend c~trughll zerona

which solution of the quadratic (3.16) is selected. These solutions will be

denoted c+ and cn, with suffixes denoting the direction of propagation; c
is aco ciated with a critical layer near y-L, cs with one near y=o. AsFigure 2b shows, the c., solutions propagate slowly (at a fixed L, c,

~decreases with Po, so that the 0.05 curve is one of the faster modes), while

the c- solutions propagate rapidly downstream. However, evaluation of
(3.8), drawn in Figure 2c, shows that the growth rates are very tiny for the

-• c- solutions (indeed, for fixed L, Ictl; decreases with Po, so that the 0.05
/..• curve is one of the larger growth modes), but are quite sizeable for the c,

~tit might be assumed that the 0(y ) modification to hcould, for L near L,, be sufficient to
make ii negative everywhere. However, such a modification must take uAL) through zero, at

~which value c=O as noted already. Such a point is a bifurcation between two complex
i,:. conjugate roots for c and two real roots, so that the statement in the text continues to hold.

io
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solutions. The sign of the instability is such that the c instabilities need
Pt, negative, the c', instabilities P,. positive, where I',., denotes 1',.(v).

b) Energetics

GKS found that the two-front instability was associated with a release
of mean potential energy, but that the perturbations drew their energy
from the kinetic energy of the mean flow. The situation for the long-wave
instability in this section is a little more complicated. The global energy
source can be located from an energy integral. Following GKS. insert
small perturbations (u', v', h') into (2.5,2.6,2.7); multiplying these equations
by fu', Iv', and h' respectively, setting e to zero, adding, averaging in the

., x-direction (denoted by angle brackets) and integrating from y=0 to L
gives

d L L
Ed - hI hiu'V'> dy, (3.20)

where

E= <h-u'2 ±h'2 > (3.21)

is a convenient measure of kinetic plus potential energy of the
perturbations. Hence the perturbations draw their energy from the mean
kinetic energy of the flow, through a transfer of momentum by the
Reynold's stress

R R=(u'v'>. (3.22)

": Now

." u- h', (3.23)

v' = (h,, + u-h',Y -h /(zi,.- !), (3.24)

by perturbing (2.5), (2.6) successively, so that

= ,)- t)- 1 [m {cjhy 2 + hl. (3.25)

where a star denotes a complex conjugate. To order i, then, using (2.12),
(3.6),

R --- lwl(ho - dp)2Poh, (3.26)



12 P. D. KILLWORTH AND M. .. STIFRN

where
[ " pc lI j = Ihn (Oh.d). (3.27)

Now 0 can be found from an integration of h* times (3.11. letting p-.0.
and takes the two discrete values

..-.. _ y<y (3.28)
{ho",<L ) y>y"

and it is straightforward to show by integrating (3.9) that R is negative
throughout (i.e. there is movement of negative u-momentum away from
the front by the eddies). Hence (3.20) shows that the total perturbation
energy increases for all time.

The contribution to the total energy from the potential energy is of
interest. Straightforward algebra on the mean and fluctuating parts of (2.7)
shows that

dL L L

<":: ':~~ " ,- [(Fizdy = -ot i(v'h'> dy, (3.29)

-(h">dy= +Ku'h'- v')>dy= pc1 , I ho 2dy>O. (3.30)
t.o 0 0

The rate of change of mean potential energy depends on

S=(v'h'>, (3.31)

the eddy mass flux, given after use of (3.24) to (3.28), as

2 POF ' = (- ,'oho-,.(O) - hoh , y < ye, (3.32)

.ci2 h, (dc 0)ho ,(L)- hoho,. y>yc.

We have been unable to simplify this expression further. However,
numerical evaluation shows that the £ eigenfunctions (i.e. those with
c>O) have S negative for y approximately less than the value where F-
reaches a maximum, and positive thereafter. In other words, the mass flux
acts roughly to spread out the mean depth profile. This is confirmed by
evaluation of (3.29), which shows the mean potential energy to decrease
with time. Conversely (3.30) shows that the perturbation potential energy
increases with time, at a rate found numerically to be nearly equal and
opposite so that total potential energy is approximately conserved.
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However, the c- eigenfunctions behave quite differently. S takes positive
values nearly everywhere, so that there is a tendency to pile up fluid near
its maximum depth. As a result, evaluation of (3.29) shows that mean and
perturbation potential energies both increase with time, which means these
weakly growing modes are driven only by the mean kinetic energy of the
system.

c) Numerical confirmation

In order to confirm these results, (2.13) to (2.15), with s set to zero, were
solved numerically for the mean profile

.=ay-jy 2 + fly 3 ; I(L)=l; 0<y<L_2. (3.33)

When flr0, this corresponds to the case of zero potential vorticity (1 + fl
=0) so that 1#1<0 represents a small perturbation to zero potential
vorticity. Furthermore,

d 6 + + 6 i 6'iv.
.,,, r =--if-+ (3.34)

for positive P, this is positive at the value of y, corresponding to c,
modes, while for negative P, this is negative at the value of y,
corresponding to c- modes. So both values of P should yield unstable
modes, those with positive P being more unstable.

The numerical results are shown in Figure 3 for -0.06 8 !50.0625. The
latter value (#= 1/16) represents a cut-off for longwave disturbances, since
at this value i-(L) vanishes and then c=O. Thus for P;- 1/16, there are only

-stable longwave disturbances, with c>max(u), as suggested by the upper
curve. Evaluation of (3.11) for vanishingly small P0 (i.e. zero potential
vorticity) gives, in confirmation, a line tangential to the c, curve for P>0,
and a zero value (also tangential) for 8<0. The values of the energy
integrals were also found to be in agreement with the asymptotics, with
mean and perturbation potential energy both increasing for negative 8 in
the range shown (although the mean potential energy decreases for fl<
-0.08, but at a rate far less than the increase of perturbation potential
energy).

In summary: although conventional instability theory for a one-layer
fluid implies that an extremum of potential vorticity is necessary for
instability, this turns out not to be the case. Infinitely long waves of
infinitesimal amplitude can grow on a single front bounded by a coastline
even for profiles with monotonic vorticity gradients.

!-4

,.,..,.. .- . .. .. . -..--
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" FIGURE 3 Numerical solutions for Iongwave disturbances to the profile A = --y + #Y
3
.

M2)= I. The lowest curve shows c, as a function of P (there is stability for # > 1/16). The
upper curves show c, for the c+, c- solutions, together with the mean velocity at the wall

-.. i(L).

The mean profiles so far have been restricted to those "near" uniform

potential vorticity, because these are experimentally realizable. Due to
friction, etc., however, most of these flows have ti vanishing at a wall,
without a flow reversal. Such flows are stable to longwave disturbances,
with eigenvalue zero. The conditions under which they may be unstable to

non-long waves will be examined in the next section.

4 4..
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-* 4. INSTABILITY OF FLOWS TO DISTURBANCES OF FINITE
WAVELENGTH

a) Demonstration of instability

We shall now remove the severely limiting restriction on the discussion
in Section 3 by showing that all mean flows (i50) are unstable for which

1, --' XL) =0, l )<0

The starting point for this investigation is the observation that the long
wave (a=O) Eq. (3.1) is satisfied by

h=d, c=O,

since the right-hand side of(3.1) reduces to ii+0(P-1)/8y=a(-F+P )/y
and the left-hand side reduces to 0((- hP+I)P- ]/y. Moreover, the
boundary condition (2.18) is obviously satisfied, as is (2.20), or (2.21), if e
and c both vanish. The foregoing means that h = = d gives the leading
term in an expansion in powers of s of (2.16H2.20). We shall solve this to
sufficiently high order to show that cj>0 and the flow is unstable. Since

.4. the resulting matched asymptotics are algebraically lengthy, the following
brief overview may be found useful.

Straightforward expansion of (2.16) in powers of a fails for two reasons.
First, the equation becomes first-order in y, the second-order term being
multiplied by a small quantity. Thus a boundary layer structure must

*: occur somewhere, within which the second-order term is important and
the (outer) expansion fails. This layer turns out to be at the wall y = L.
Second, the outer expansion is badly behaved at the wall, necessitating
logarithmic terms in the & expansion.

This forces the (outer) expansion

h= h0  + 2h 1+ a log ah2 + 4h3 +...

c= 82c1  +8"C2+.. (4.1)

since a little algebra shows that the 0(r) term in the expansion for c must
vanish. A simple matching at 0( 2) between outer and inner solution
shows that c, and h1 are both real. This yields a critical layer (ii-,=0) at
a distance O( 2 ) from the wall, where (2.16) becomes singular. (This
singularity is present in both outer and inner solutions.) It is necessary to
invoke a yet smaller layer (a "tiny" layer) of thickness 0(8'), situated a
distance 0(2) from the wall. This double layer structure is shown
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schematically in Figure 4, and has an "inner" layer of thickness C2, with
co-ordinate Y defined by

y- L-== 2 Y, (4.2)

within which is the -tiny" layer of thickness :", with coordinate : given by

pZ = U- _ 2Ct I ; I(L)]/p4 y _ C I gi, '(L)]/E2. (4.3)

(There will be little need to consider the formal details of the "tiny" layer,
whose role is restricted to providing certain complex phase shifts of
logarithms.) The matching at O(e') will then show that c2 is complex, and
ti-c is O(e') in the "tiny" layer, which smooths the singularity in (2.16).

We now demonstrate the above assertions. The outer solution begins
with

ho=t C0 =0, (4.4)

and ivo=-h o is the corresponding leading term in v=vo+s 2v+. ...
Higher orders may be obtained either from (2.16) or more easily, from
expansion of (2.13) to (2.15). From these we obtain a first-order differential
equation

y

% A jh , - t h l -_ 3 -_ ( . I -( I - - F t -d d y = . ( 4 .5 )

IT. 0 V)

I t
II I' I

,* tI

I

II

I

• O(e;)

£22

FIGURE 4 Schematic of the double layer structure for the problem of Section 4.
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The suceedin$ terms in the h expansion are

h2 =0. 14.61

-h- &ih3 - c2 + I(h 1) = 0, 14.71

where Il'k,) is a complicated second-order functional of hi, and (4.6) has
used the convenient scaling condition

h=u, y=O. (4.8)

,I Equations (4.5), (4.7) are singular when u vanishes, and the form of the
solution is

h, ~, +i iox l +ygji+ +.... -0, (4.9)

.h3~logl l+3+' . -0 (4.10)
where most of the coefficients are determined by substitution in the

equations.
The inner layer equations are much easier. Noting that h vanishes to

leading order, we may write

h(y)=h(s2 Y).H(Y)=s2 H +E'logSH 2 +E4 H3 +... (4.11)

in the layer (H should not be confused with the dimensional depth of the
fluid). Expansion of (2.16) yields

Hrr=0, H 2 rr=0, (4.12), (4.13)

H 3rr= -u 2pHjr+u 2pH(Yu1 -c,) ', (4.14)

where
i ~ ~~~u.=-d(")u'L)/dy ", p--d()-(l ,) 1 (4.15)

are conveniently defined. Because ti is negative, u 0. The boundary

condition (2.18) gives (unless u, = 1, a singular case)

cHir+H=0, 1 (4.16a)

c, H2 +H 2 =0, Y =0. (4.16b)

('H 3 y+H 3 +CzH r=0, (4.16c)
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The first step of the solution is to show c2 to be real by matching at
O(2). To this order, the outer solution is

h=hi+ 2 hi =c2 (Y +ad' (4.17)

%) after transformation to inner variables. The inner solution is merely

i 1 H, -=A Y + B, (4.18)

with the tiny layer providing continuity of A,, B, across the (as yet

undefined) critical layer. Matching yields the inner solution as

Hi =u Y+a, (4.19)

and substitution into the first equation of (4.16) gives

cluj +Oj=0, (4.20)

where a, is defined in (4.9). Now (4.5) gives

a--+ C',-(I-u') L Kd2 dy] /U.,  (4.21)

which, after use of (4.20), gives

cl= -[I +i(L)]- - 2dy. (4.22)
0

Hence cl is negative for all profiles under consideration, since ul = ,(L)
must be positive. Hence ti-c vanishes at a value of Y=cluj 1 <0 which is
inside the fluid. Thus H 3, given by (4.14), is singular when Yu -c,

1,, vanishes.
This singularity will force c2 to be complex. As indicated in the

preamble, the matching at O(e'), now involving the tiny layer, will obtain
c2 . To 0(z'), the outer solution is

h --i+ 2ht + 4h3

=F2(uI Y+"a)+4log(2ft, Y+ o)

+ 1:4(l , y2 + p, Y log YI + Y Y + log I YI + 3), (4.23)

I-.

1".

L" ..
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after expression in inner variables and truncation to O(s'). The inner
solutions are

H2=A3 Y+Bz, (4.24)

* (4.25)

where the superscripts ± refer to (Y-clu1 1);!o respectively. The jumps
-' in A 3, B3 are found by consideration of the tiny layer at O(c'), where

terms in zlog(Z-C 2U171 ) occur. As Im(c2)>0 by supposition, this leads to
log (-I YI) being interpreted as log I YJ - ix, so that

A' -A -=i71U2C1/u1  (4.26)

B+- B~j- ixu2cf/uf, (4.27)

which are the phase jumps in the evaluation of the logarithms in (4.25).
Writing the inner solution to O(c"), expressing it in outer variables and re-
truncating, leads to

h = 2 u1(Y - c1) +c' log (A2 Y +B 2 )

+z4(A Y+ 8 B uY +u2CIUj Yl Yj

+ 2u2C2'u - u2CIU 1 -2 u 2 u 2 log ~I*(4.28)

Matching the O(S') terms only (as these will yield C2) between (4.23) and
(4.28) gives

A3 =Vi +CIu 2/ul, (4.29)

The cigenvalue C2 is now obtained by substitution into (4.16c). Using
(4.26), (4.27) this gives

CIy 1 +CI-2(I + iir)+WIU2log C-

+C2u1 + 1 n-lg: C (4.31)

Now cl, u,. u,. ;,are all real. Furthermore the imaginary part of 01 is,
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from (4.7), (4.10), only -Un ' Ir(tm2). Hence the imaginary part of (4.31)
gives

jcu2uI ir+uI lm(c 2)-czu n-u - ' iM( 2)=0, (4.32)

from which
Im (C2 ) = - C U.n/u (I + u). (4.33)

So c 2 is complex, provided that lm(c 2)>0 as supposed when evaluating
the phase shifts. Since u, is positive, this requires

U2 = i,,(L) < 0 for instability, (4.34)

as well as the assumption that the potential vorticity does not vanish at
the wall. (Thus constant potential vorticity flows are stable because u2
vanishes when ii does.) Hence instability requires that the flow not be too
"jet-like" near the wall (when ki would have positive curvature).
Equivalently, the potential vorticity P given by (2.12) must have a
maximum (but not an extremum) at the wall [P(L) >0].

b) Energetics

The energetics of the instability demonstrated here are more
straightforward than those considered earlier. The Reynolds stress

R=<u'v'> =1 Re {i[(Z-c)h,-h](l -z)-'h*)}+O(E6), (435)

and, using (4.1),

R = s'[1 -ti,(L)] -'{Im (c)a, + Im (Iih 3 - tih3y)} (4.36)

= _E, Tm (c2) [1 + ti,(L)] -- ci[l + ti,(L)], (4.37)

after use of (4.7), where c = Im (c).
This is the same expression (but two orders of magnitude smaller) found

by GKS, showing that similar energetics to the two-front case are
occurring, but heavily stabilized by the presence of a wall. Similarly, thc
mass flux is given by

S = 2 ''h'>M= ( -(L)] ' ReO- i(i-.)hh *

=r[I -zi(L)] l{ a im(c.2)ii+dIlm( th3 .3h8)
= r.4 i Irn(c 2) =jzic1 <O (4.38)

.,.' .

I ° * ° " " " " " "" *"



IiINSTABILITIES ON BOUNDARY CURRENTS 21

for all y. This is again formally the same expression as in the two-front
case, and shows a redistribution of mass leading to a lowering of the mean
centre of gravity.t Indeed,

and

W-f <(h'2>dy= cj ho 2dy= 4-jci 
2 dy>0, (4.40)

0 0

so that

d L

t J(PE+PE')=O, (4.41)

showing that total potential energy is conserved (and therefore so is total
kinetic energy). However, (3.20) shows again that mean shear is necessary
for the instability (i.e. a source of potential energy is insufficient), so that,
for example, the two-layer configuration discussed by Jones (1977), with

4 constant di in the top layer, is stable unless the deep lower layer is allowed
to play a role.

c) Numerical confirmation and extensions

We again consider first the profile (3.33), with P chosen so that u(L)
vanishes (i.e. P= 1/16). The stability curve is shown in Figure 5, together
with the asymptotics (4.22) and (4.33) for the real and imaginary parts of
c. The expression for Re(c) is quite accurate for e<0.6, whereas the higher
terms in the expansion for ci cause (4.33) to hold only for quite small
values of c. Nonetheless, the validity of the asymptotics is demonstrated.

_" The growth rate eci reaches a maximum at e=1.26, ci=9x 10- , cc,
=0.012. (This growth rate is an order of magnitude smaller than those
found for the two-front instability by GKS, again demonstrating the
strong stabilizing effect of the wall.) The structure of the fastest growing
mode is very similar to that shown in GKS, in that the mode has
horizontal velocities almost in radians out of phase, as the asymptotics
above would suggest. It is quite surprising that small r asymptotics should

tHoseer. the mass transfer is now one-signed. because 6i is also. This means that the one-
layer model now fits the observations of Smith (1976) in the Denmark Strait e%en better than
the two-front model considered b) GKS.
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' ,0 ' FIGURE 5 Numerical unstable solutions to the profile h=(5/4)y-jy 2 +(l/16)y 3 . 0_ySL
=2. for varying wavenumber e. The dashed lines show the predicted asymptotics for small r

given by (4.22 (4.33).

continue to give a qualitatively correct picture at c=0(0). For large C, ci
declines slowly with a. The mode is concentrated within O(E-') of the

".'-" front, with c,u-tO)+ 0(-u12). This frontally-trapped instability mode can
exist independently of other boundaries, and it is hoped to study this

,:- further in a later paper.
The effects of varying the conditions at the wall can be studied by

means of the profile

.'=ay+py2 +yy 3; E(L)=I; igL)=0, L=2, (4.42)

for varying y. The fastest growth rates, and corresponding wavenumbers,
are shown in Figure 6, and it is interesting to compare this with the
asymptotic theory above. We have, after some algebra, the following facts:

i,(L) =0, ,=0; i,,(L) < 0, y >O; (4.43)
~lL)=O, y=j, i.e. u{y) 0, ,' (4.441

.,(L)= -1, y=j. (4.45)

Thus when y is negative, ti,(L)>0 and there is stability. For 0<)'<!.
the flow does not have a reversal, and the theory of this section holds
when e is suitably small. As y nears f, ul becomes small and the
denominator of (4.33) begins to increase. When ly - J1 becomes of order r,
there is a transition to a thicker boundary layer (of thickness t). The
asymptotic (4.22) for c, continues to hold, but the c, expression is

1 ,
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FIGURE 6 Fastest growing modes for the profile h=ay+Py'+yy9, iRL)= I, uAL)=O. L=2,
as functions of y, proportional to ,in(L).

modified. For y >J, there is a flow reversal. The expression (4.22) for c,
remains valid, and the critical layer leaves the wall and enters the fluid
proper. It is straightforward, but tedious, to follow the phase jumps in the
solutions and conclude that c remains complex. Only when y nears I
when the (1 + u 1) term in the denominator of (4.22) nears zero, does (4.22)
begin to break down. When y >j, there is a strong flow reversal [d,(L)<
-1] and the unstable mode now possesses complex c even when c = 0,
rather like the long-wave unstable flows of Section 3. However, it should
be stressed that despite these subtle changes for small 6, the behaviour of
the growth rate even at small e, as well as the fastest growing mode,
remains smooth, as Figure 6 shows. Values of c for the fastest growing
mode lie around 1.3 to 1.4, corresponding to wavelengths of 4-5 radii of
deformation, with growth rates increasing almost linearly with y. For
small y, c decreases rapidly (indeed, it is a common feature that long
waves are the most unstable near the stability boundary).

5. THE EFFECTS OF VARYING CURRENT WIDTH

The discussion of the previous sections has dealt with a current of fixed
width L. It is of interest to see how the properties of the instabilities vary
with the width of the current. In the case of Iongwave disturbances on
profiles of nearly uniform potential vorticity (Section 3) the answer is
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straightforward. We have seen that L must exceed a critical value 1, > 2'
for instability to occur, and that growth rates increase with L. The answer
is not so simple for disturbances to a flow with icro velocity at the wall
(Section 4). This is because the preferred mode of instability dcpends oth
on the width and the shape of the profile.

We can estimate this effect for a few simple cases. Suppose the shape of
the profile is self-similar, so that

y(5.1)

-. Then (4.22), (4.33) imply [making the plausible-from numerics-but
unproven assumption that the small F results give correct orders of
magnitude when c,- 0(1)]

K -, l  e--2L[L 2 
-"()'- n(,,) 2d (5.2)

0

-
4 L34'(6 ... (4, )2dni}

"" C E 1CV '(5.3):-.', lib"1)[V - 011"(0)],

For narrow currents, then (L< I), the growth rate for small , should vary
as V < I, while for wide currents (L > I), the growth rate should decay as

SL-'<I. The modes under discussion should have largest growth rate
when LzO(1), with much weaker values for wider or narrower currents.
This conclusion may be different for the frontally-trapped modes to be
discussed in a subsequent paper.

It is of course difficult to conceive of a flow in which the only length
scale is the width L; the radius of deformation (here unity) must be a
natural length scale also. If we now seek an almost total dependence on
the radius of deformation, we have

h- O(Y) (5.4)

The expressions for c, and ci yield, for narrow currents

F.7.i17. . _  ,=8 O(1) ci 84"0 I),(5.5)

so that growth rates should be order unity for E=O(1). For wide currents
(L> I), it is natural to assume that ti decays exponentially away from the
front on the scak" of the deformation radius, so we pose i-, ", >I.
Then

.4:

., • ,_ .. . . . .
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L I

-- 2 ! ,-fOdy -,2!ljy

,M ":-, -CI "d --- 0:2). (5.6)
I+u

c-E 4O(l)e -Lr/e-L(! + , ) o0:4), (5.7)

which would suggest that instabilities on wide currents can be vigorous
and roughly independent of current width (again, the same will be true for
frontally-trappd modes).

Typical mean flows will contain depth variations on scales of both the
deformation radius and the current width. Similar calculations imply small
growth rates for narrow currents and only slowly decaying growth rates
for wide currents. However, it is clear that no general rule can be given,
apart from the approximate rule of thumb that narrow currents are only
weakly unstable.

Even this rule can fail, if the flow profile is chosen to give a large value
of Im(c). Figure 7 shows the fastest growing mode for the profile

,= I - [(L-y) cosh (L-y)]/L3 cosh L, (5.8)

which has i and ii, both zero at y= L, implying strong growth rates by
(4.33). The profile is chosen to be "near" the (stable) constant potential
vorticity profile [1-cosh(L-y)/coshL]. The main difference is the
stronger fall-off in depth near the front (and correspondingly stronger
mean flow) for the profile (5.8). For wide currents (L>Z2, say) the
wavelength of the fastest growing mode is almost constant, at 2.5 radii of
deformation. The growth rate decays slowly as L increases, and the phase
velocity c, (which always moves with the fluid) grows gradually as L
increases. (The instability is one confined to the front for large L, hence
the lack of dependence upon L.) However, the growth rate increases
rapidly as L becomes small, with a corresponding increase in the preferred
wavelength, because ti becomes large at the front. The phase speed

4 increases somewhat for small L. So this is an example of strong instability
for narrow currents, although at longer wavelengths. Indeed, for L<2 the
growth rates for profile (5.8) are stronger than for the two-front constant
potential vorticity instability found by GKS, as suggested by u, vanishing
in (4.33).

6. DISCUSSION
Conventional theory for a flow with one active layer (usually known as
quasi-geostrophic theory) implies that an extremum in the potential
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FIGURE 7 Fastest growing modes for the profile h=l-(L-y)'cosh(L-y)/(LcoshL) as
functions of width L.

vorticity of a flow is necessary for that flow to be unstable to infinitesimal
disturbances. Such theories are invalid, suppressing interesting instabilities,
when the thickness of the active layer becomes small and when inertial
terms become significant compared with Coriolis terms. In the previous
paper in this series (GKS) we showed that flows with two fronts were
almost always unstable, relative to a mode which couples the two fronts.
This type of coupling cannot occur in the models considered herein,
because of the rigid coastal boundary. However, we have shown here that
the latter flows are also unstable under fairly general conditions, even if
the potential vorticity is monotonic.

In detail, two classes of instability have been derived, both fairly
general. In the first, mean flows close to uniform potential vorticity are
shown to be unstable to infinitely long disturbances, and hence by
extension to finite waves also. However, a flow reversal is needed for this
instability. In the second, mean flows which vanish at the coastal
boundary are also shown to be unstable to waves of long but finite

5, wavelength.
It is interesting to compare the predictions in this paper with the

observations of unstable buoyancy-driven coastal currents made by
Griffiths and Linden (1981). They found that currents produced
by leaking less dense fluid into a container of dense fluid from a source
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adjacent to a vertical wall became unstable when the width 1. of the
current became wider than some critical width L, which varied greatly
with source flow rates, friction and depth ratios (all of which affected thegflow profile). L, always exceeded three deformation radii, based on the
layer depth at the wall. The observed wavelength was about 2L. and the
phase velocity was oriented downstream with a magnitude rather smaller
than the maximum velocity of the fluid. Griffiths and Linden (1981a)
interpret their observations within the framework of quasi-geostrophic
barocinic theory, i.e. the instability releases potential energy via an
essential coupling between the upper and lower layers. The equivalent
one-layer instabilities discussed in this paper can therefore be expected to
explain only certain features of these observations.

The longwave theory of Section 3 predicts stability for narrow currents,
and the theory of Sections 4 and 5 indicate that narrow currents are
usually only weakly unstable. This is in qualitative agreement with
observations, which do not show finite waves for LO(1). However, there
are areas of disagreement. The observed value of 3 < L, < 15 is distinctly
larger than is predicted by any of our calculations. Furthermore, one-layer
disturbances on wide currents tend to be trapped at the front, and so also
have wavelengths of order the deformation radius. As previously
mentioned, a clearcut comparison is difficult to make, due to the unknown
vorticity profiles, friction, and due to the modifications caused by the finite
bottom layer in the experiments. The wide variation in growth rates and

* wavelengths between the theoretical profiles shows that accurate modelling
of experiments needs a much more accurate knowledge of the mean flow,
and a more detailed theory.

Later experiments (Griffiths and Linden, 1981b) concentrated upon
density fronts produced by the collapse of an annulus of light fluid, so
possessing approximately uniform potential vorticity. These later, more
controlled, results were rather different. The observed disturbances were
almost stationary, and the observed wavelength depended upon the width

'p. of the current. For (initial) widths L less than or of order the deformation
radius, the wavelength scaled with the current width, with a value of
about 2.2L, but no critical width L, was observed. For La 1, the
wavelength scaled with the deformation radius, the nondimensional value
being about 7. There is much better agreement with the theory in
Section 4 for these later experiments. Theory predicts c, to be weak [O(2)
for small E and fairly small numerically for c=0(1)], so that the
disturbances propagate only slowly. The wavelength is predicted to scale
on the deformation radius for wide currents, as observed. The "short"
waves observed for small L may be explained by the rise in growth rate in
Figure 7 for small L, as the wavelength remains of order the deformation

,
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radius, which was small ror narrow currents in thc cxperiments. Thc only
* major discrepancy is that the profile in Figure 7 lcads to wavclengths for

large L of 2.5 times smaller than the 7 deformation radii observed.
However, the sensitivity of growth rate and wavelength to the profiles in
the theoretical model again point to the difficulty of making a comparison
with experiment. We may conclude, however. that a large portion of the
physics is captured by the simple one-layer model discussed in this paper.

N
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ABSTRACT

A Rayleigh integral is used to prove that an unbounded geostrophic

front of uniform potential vorticity is stable with respect to small

perturbations of arbitrary wavelength. The ageostrophic theory devel-

oped in this study yields a stable, near-inertial, long trapped mode.

Recent oceanic observations of the increase in the energy of the iner-

tial peak in the vicinity of fronts support the existence of this iner-

tial trapped mode. In addition the theory yields a geostrophic mode

which is expected to become unstable when the potential vorticity is not

uniform.
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II
I. Intodution

The recently growing interest in the dynamics Olt surface fronts i.e.

when the interface between layers of light and heavy fluids intersect

the surface stems from their ubiquity in the atmosphere and the ocean
(Mooen, 1975; Legeck13, 1978; McClimans, 1979). The Gulf Stream and the

/ Kuroshio are two oceanic examples of an unbounded surface front while

the ("Jet stream" and the Southerly Buster are two atmospheric examples.

Experiments (Stern, Whitehead and Hue, 1981; Griffiths, Killworth and

Stern, 1982) as well as numerous observations demonstrate the highly un-

stable nature of surface fronts,

When trying to explain the origin of frontal instability it was na-

tural to use as a starting point the classical instabilities which the

quasi-geostrophic theory yielded, namely, the baroclinic and barotropic

instabilities. The most renowned examples of instabilities on quasi-

geostrophic systems were given by Charney (1947) and Eady (1949), and a

complete investigation of the necessary conditions for these instabili-

ties was carried out by Pedlosky (1964).

* An essential element in the necessary conditions for instability on

quasi-geostrophic systems is the gradient of the potential vorticity

(Pedlosky, 1964). This gradient has to change sign in order for inst-

abilities to develop in a two layer, quasi-geostrophic system (see also

Killworth, 1980), and the same condition, holds when the lower layer is

aSSumed passive and infinitely deep.

But the application of the quasi-geostrophic instability criteria to

surface fronts is unjustified for two reasons. The lateral shear at the

free streamline of such a front must equal the Coriolis parameter in

-3-
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order for the potential vorticity to remain finite. As a result the

Rosby number is 0(1) and the first assumption of the quasi-geostrophic

approximation is violated. The second point is that the variations in

depth of the interface are not small compared with the mean depth (actu-

ally they are singularly larger at the free streamline), and hence the

second assumption of the quasi-geostrophic approximation is violated.

An example of a frontal instability on a surface front which violates

-, the necessary conditions for instability of the quasi-geostrophic theory

is given by Killworth and Stern (1982) where a single layer, wall bound-

ed, front with monotonic potential vorticity is shown to be unstable.

Since the extrapolation of quasi-geostrophic theory to the surface

*.: frontal problem fails in a qualitative way, a different theory has to be

developed for surface fronts.

The first comprehensive study of frontal instability is given in Or-

- lanski (1968) for a front consisting of two active layers of uniform

speeds separated by a uniformly sloping interface. In this paper Orlan-

ski found four intersecting families of instabilities differing in the

- region they occupy in the Rosby number - Richardson number phase space

and in the generating mechanism. All the growth rates vanish when the

wavelength becomes infintely long and a direct relationship between

these frontal instabilities and the quasi-geostrophic barotropic and ba-

roclinic instabilities could not be established. Although the potential

vorticity in Orlanski's simple model is singular the study demonstrates

that fronts have unstable modes which are generated by mechanisms other

than those known from the classical instability theory.

-4-



Another approach used to develop a new theory is to infer from obser-

vations the essential components of such a theory. In this connection

we note that the Gulf Stream has a very strong surface signiture (see

for example the satellite observations of.Cheney and Marsh, 1981) and

can therefore be classified as a surface front. Observations on the

Gulf Stream show that it has an abundance of instabilities in the form

of eddies, rings and meanders (Lai and Richardson, 1979). Yet other ob-

servations indicate that the potential vorticity across the Stream is

nearly uniform (Stommel, 1966; Luyten and Robinson, 1974). In view of

the inapplicability of the quasi-geostrophic theory one might be in-

clined to look for unstable modes on an unbounded uniform potential vor-

ticity, surface front. In chapter II we show, using a Rayleigh integral

technique that such a front is stable with respect to small perturba-

tions of arbitrary wavelength.

The implication of this stability theorem is that it is the slight

departures from uniform potential vorticity, possibly through interac-

tion with the lower layer, which produce the observed instabilities on a

front like the Gulf Stream.

The instabilfty found by Griffiths, Killworth and Stern (1982) on the

coupled front with zero potential vorticity is another example of fron-

tal instability which violates the quasi- geostrophic criteria for inst-

ability. This instability also demonstrates the highly unstable nature

of'surface fronts where even a dynamically simple front (no potential

vorticity) is unstable.

But instabilities are not the only interesting dynamical features of

fronts. Several recent observations reveal a conspicuous enhancement of

%-5



near inertial oscillations in the vicinity of fronts. Fu (1981) com-

pared current meter data from the Polymode arrays in the Western North

Atlantic. He found an increase of 4dB in the energy of the near iner-

tial peak under the Gulf Stream (4000m) compared with that of the mid-

ocean. Fu himself, not being able to explain this increase pointed out

the need for a theory of the coupling between inertial waves and cur-

rents.

Another relevant observation is that of Mayer et al. (1979) on the

velocity spectrum at a midshelf location on the Middle Atlantic Shelf.

They found that the inertial peak contains about 30% of the kinetic en-

44,) ergy in the summer while in the winter the peak is totally eliminated.

The wind pattern in the region is such that the wind stress is much lar-

ge in the winter than in the summer. Therefore the inertial peak in

the velocity spectrum cannot be interpreted in terms of a wind induced

inertial oscillation (Stern, 1977; Pollard and Millard, 1970). However,

when the hydrography of the water column in the summer is compared to

that of the winter it is found that in the summer there exists a strong

front between the fresh water runoff and the shelf water. In the winter

the winds erode away this sharp front and the water is nearly homogenous

* ,. in the vertical.

Another relevant observation is that of Kunze and Sanford (1981) who

studied the velocity profile in the vicinity of the North Pacific Sub-

tropical Front. Their observations showed a sharp increase (a factor of

4) in the kinetic energy of the clockwise component of the horizontal

velocity in the region of strongest horizontal temperature gradient.

-6-



All these observations (Fu, 1981; Mayer et al., 1979; Kunze and San-

ford, 1981) suggest a strong correlation between the increase in the en-

orgy of the near inertial oscillation and the prevalance of fronts. A

• theoretical connection between the two is established in chapter III.

The observations of Kunze and Sanford (1981) show that the high cor-

relation between the front and the near inertial oscillation exists only

for the anti-cyclonic component of the rotary spectrum of the horizontal

velocity. This is the only observation which makes this distinction,

and the results of chapter III on the near inertial stable mode are in

line with this differential increase in energy.

Another phenomenon which has been observed in numerous oceanic exper-

iments is the slight shift (a few percent) in the frequency of the near

inertial peak (Kundu, 1976; Gonella, 1971; Perkins, 1972; Webster, 1968;

Day and Webster, 1965; Fu, 1981). Although many theories predict it

(Munk and Phillips, 1968; Pollard, 1970; Stern, 1977) the results of

chapter III provide another explanation for this shift in the vicinity

of fronts.

.4.
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II. LINEAR STABILITY OF SEMI-INFIMITE SURFACE FRONTS

The front shown in figure 1 where a layer of fluid of density ,

and depth h(y) overlays an infinitely deep layer of fluid density

1 2 > :11 is assumed to have a constant potential vorticity. The x and y

momentum equations, for the u,v velocities respectively, the continuity

equation and the conservation of (the constant) potential vorticity in

the upper layer are:

-J

"-' 4-

where is the reduced gravity, f is the Coriolis parameter and

H is the depth of the upper layer at p- .

The first three of these equations are familiar from shallow water

theory and the fourth one expresses the major simplifying assumption of

constant potential vorticity, this assumption is consistent with obser-rv
*vations across the Gulf Stream (Stommel. 1966; Luyten and Robinson,

1974). The single layer model whereby the lower layer is considered to-

tally passive and non-interacting is introduced for simplicity. Exami-

nation of quasi-geostrophic theories and other frontal instability prob-

lems shows that the interaction with the lower layer can introduce

-8-



instabilities which are not present otherwise (see Orlanaki, 1968; Ped-

1msky, 1964). We therefore anticipate that there exist instabilities

which will not be recovered oy our simple model. Nonetheless, an inter-

eating stability theorem and a special inertial mode can be obtained

from our simple, single layer model.

These equations are now nondimensionalized by scaling the u, v veloc-

ities by (g'H) 1 / 2  the time t by 1/f, the height h by H and the x, y

coordinates by the radius of deformation (g'H)1/2/f. In nondimensional

form these equations become

Lr) +r(k Lt-

The mean flow is assumed to consist of w, which are steady, indepen-

dent of x, geostrophically balanced, and with constant potential vortic-

ity; i.e.

The solutions of this which satisfy h(O)=OZG (-a) are

9



- (2)

We now let the total velocities and interface depth be of the form

Uusl..' vxv' h=Shl where the primed variables are small perturbations

to the mean. When we linearize the x momentum equation, the continuity

equation and the conservation of potential vorticity and use (2) the re-

sult is•

dl

We assume that the perturbations represent a free wave traveling in

the x direction, i.e. (u',v',h') = (u(y), v(y), h(y))e ik (x-Ct ) where

* C=(#/k is the phase speed of the wave. The unstable modes are character-

ized by a non-vanishing imaginary part of C: k is assumed, with-

out loss of generality to be real positive.

Differentiating (3) with respect to y and eliminating ;-r-V) bet-

ween (3) and (4) we get with the aid o' (1) and (2)

When v from (5) is used in (3) we get

(7)

-10-
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Before obtaining an ordinary equation for u we draw some qualitative

conclusions on the behavior of the non-trivial solution in the longwave

limit. We note that in the limit K-0 equation (7) implies whi-

le equation (6) yields UZ-a" for bounded C. The resulting u, h which

are regular at y=-. are uzAeYz-h and (5) implies that wk. Therefore,

in the longwave limit, when C is bounded, the motion is downstream

(Lr/L L ' K -O) • For finite &V) =kC (3) implies in the longwave limit

-iwuzhv and near the free streamline u must vanish i.e. the motion is

• ' primarily across stream. For finite k, (7) implies h(O):-u(O).(1-C) and

v in (3) is therefore regular at the free streamline.

Equation (7) is substituted in equation (6) to obtain a second order

equation for u. The details of the algebraic manipulation can be found

in Paldor (1982) and the result of the substitution is

The problem is to compute C(k) and to find if C> 0 for any regular wave

u(y) which solves (8).

In order to simplify the analysis we use the transformation

(z (= ) ( 3(-z
i.,i

(v/e get from (8)

o. + [K'(-z)I(-z- -) + 1(z"E' )(:z -z K)- 1" (9)

which is simpler than (8) because the coefficients are algebraic.

J! _ 1 -
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For real k equation (9) has two regular singular points Z-O,l (cor-

4responding to the free streamline and infinity respectively) About

each of these singular points we can find a regular solution in terms of

a Frobenius series (see Bender and Orzag, 1978), the radius of conver-

gence of which, is not greater than -the distance between the singulari-

ties.

By multiplying (9) with some function F(Z) it may be converted to the

Sturm-Liouville form

where

Y ,

Since the coefficients of and must be proportional in (10)

and (9), the function P(Z) in (10) is determined by

P -)z I-Z IC 2) z 2 IZ Z+ 1 L

or

~i.e. z (-z)
:Zk.' 1

Therefore, the oroper multiplier F(Z) of (9) is determined by the ratio

of the coefficients of in (10) and (9) i.e.

,..F~z -. (z) _____(- __) ____ )

-12-



The other coefficients of (10) are

i ~~~~(z) :.z z ,(+ .(_)zz ,)F z

.9 f,(z) = k1 z - (z

The transformed eigenfunction equation (10) is suitable for the ap-

plication of the Rayleigh integral technique which has been used to ob-

tain important qualitative properties of stability problems. We thus

multiply (10) by V(the complex conjugate of ), and integrate the re-

sulting equation from Z=O to Z=1. The two equations for the real and

imaginary parts are

00

The only boundary condition used here is the regularity of

Equation (11) is obviously satisfied when - Assuming the exis-

tence of unstable modes we let IO in which case (11) becomes

When~ (~zI~.dZ(13)
When (13) is used in (12) we get

-13-



dZ- (r%~~) 2.C/zf t Z ~O (14)
0 R. 0r.

The first and third terms in (14) are negative since i4P4postiv e for

ll O4ZS).a To show that the second (Q) term in (14) is negative we

write Q as:

Each of the terms in the square brackets is non-negative and. there-

fore Q(Z) is not positive for O Z I. This proves that the second term

in (14) is also negative for non trivial eigenfunctions (4z)10). The

assumption 00 therefore leads to a contradiction, and thus we have

shown that the eigenvalues of (10) are all real. The single layer un-

bounded surface front of uniform potential vorticity shown in figure 1

is therefore stable.

F' -14-
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III. STABLE TRAPPED MODES

As was mentioned in the preceding chapter, equation (9) has two regu-

lar singular points at Z-O and Z-1. The regular solution (0 (Z) about

ZO and the regular solution ,(I-Z) about Z=1 can be expressed in terms

of a Frobenius series in Z and 1-Z respectively. The radius of conver-

gence of each of these series is not greater than the distance to the

other singular point, and the series are asymptotic to the solution in

the vicinity of the singularities. An eigenvalue equation which deter-

mines C(k) will be constructed by requiring ( ,(l-Z) to be asymptotic to

Ojz) as 740 , and as a check we will invert the procedure by requir-

ing 4,(Z) to be asymptotic to c(pI-Z) as Z4 . ks an additional

check we will integrate equation (8) numerically from Y--8 ("infinity")

to Y--10 - 5 and compare the resulting eigenfunction to the one obtained

by the series solution. We start by constructing the Frobenius series

solutions (z) and (see for example Bender and Orzag 1978).

A. The solution near the free stramline.

In the vicinity of the singular point Z=O equation (9) can be written

as

I- (-) (7)

7_ 4 k- a (15)

where the prime denotes differentiation with respect to Z and where the

functions G(Z), q(Z) are

-z)-- z)(7J)- - Z -

(Z +K"-) + (-Z),
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In order to develop the Frobenius series (16) for the solution t,(Z)

we have to develop the power series 6-Z 7hZ . Since the

power series expansion for - converges only for ,Z I it is

clear that the power series expansion of G(Z) and q(Z) will converge at

O14 VI only for K 1. The importance of the Frobenius series (16) is

,: therefore that: first it yields the frontal boundary condition at Z=O,

and second it can be used to check the eigenvalues (but not the eigen-

functions) we derive in the next section.

Substituting the Frobenius series

in (15) we first obtain the indicial equation I OC. Therefore one so-

lution has the form (16) (with o:0) while the second solution has a lo-

garithmic singularity at Z=O.

Furthermore the coefficients f. in (16) can be derived recursively

by assuming, without any loss of generality, a.=1. The algebraic ex-

pression for the general recursion relation of (a..) is

1..0

where gn' qn are the power series coefficients of G(Z), and q(Z) respec-

tively. We note that implies, according to the recursion

Srelation, an=O , w; and we therefore conclude that all the eigenfunc-

tions have a finite diplacement of the free streamline. Moreover, iden-

tifying Q*-*((o)' the recursion relation OL#-:-1,* yields

the frontal boundary condition at Z=O in terms of ql (the coefficient of

Z in the power series expansion of q(Z)) namely:

-16-



We shall see shortly that the regular solution at Z:1 is zero there.

Hence the proper boundary condition for these trapped modes is O(Ozo.

When (16) was summed at Zzl it was found to diverge there. Nevertheless

we were able to determine the eigenvalues C(k) by fixing k, and finding
A

the value(s) of C at which £p(j:.o)_ changes sign. The eigenvalues

determined in this way were independent of the number of terms (N) taken

in (16) when N was large (N>15). Direct summation of (16) does not pro-
vide any information on the eigenfunction away from Z-O and we turn now

to the solution near Z=1.

B. The Solution at Infinity.

In order to construct the solution near Z:1 we repeat the same proce-

dure Used to construct 0,. thus we define l-Z=; and we rewrite (9) in

the form

.., , ,4 ..0 .o .P, ..* * * o : 7 ,0 .o (o1 8)- l
where the prime denotes differentiation with respect to ,Z)- and
where the functions R(h, SO) are

I 2 C K2___

-~W C)I

We now use the power series expansions

- -
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in order to develop the power series expansions

The result is:

0-a 02 t
,I- 2 (i-,' c_-o

The series J_.K/ and r .1- converge for o,J ), and therefore

(19) will converge at all 'or4- regardless of k. Numerical.summation

of (19) at P11 shows that it converges there too. The solution of (18),

, can be written as

coo ('r) Zr 1 b./ - 0.z hb {,Z) 0 ,I <9)

By direct substitution of (19) in (18) we first obtain the indicial

equation for the iadex

and the recursion relation for the coefficients is

I: -,b

S1
For real C4/:pKC -4 1-#K only the solution with the index

--'(,+K- e- -WY is regular at Z=1 hence the boundary condition

there is O(Z(:I)-O. When is imaginary and there are two os-

cillatory solutions at infinity (ZzI). We defer a discussion of the

latter case to chapter IV and turn to the trapped modes characterized by

real . When (19) is used in (17) the latter becomes

-18-



* 4E (20)

Equation (20) constitutes the eigenvalue equation which determines

C(k). It converges rapidly on account of the convergence of (19).

C.Eigenvalues and Eigenfunctions

The dispersion relation u(k) (Figure 2) was determined numerically

by sweeping for fixed k, over-(-.'/4<w(,'') ' to find the W(k)

which satisfy the eigenvalue equation (20). In the regions W3 >U1K 2

there is a continuous spectrum which is discussed in the next chapter.

Since (20) converges rapidly only 20 terms were sufficient and subse-

quent summation of 80 and 200 terms yielded indistinguishable results.

The eigenfunctions of the different modes for k=3 shown in figure 3 were

computed with 20 terms from (19). The curve show in figure 3a was re- '

produced with 80 and 200 terms without any discernible difference.

The behavior of the eigenfunctions of figure 3 (found by summing (19)

numerically) near the boundaries Z=O, Z=1 can be derived analytically.

In the vici..Aty of Z=O, (17) implies that 7 )and ON have opposite

signs provided ql > 0. From figure 2 (we could also derive this result

analytically from eq. (12)) it is clear that all eigenvalues satisfy

C (10 <1 and this assures that ql > 0 for all the eigenvalues.

Thus if 0(0) is positive the derivative is negative and vice versa.

There is no solution with O(0)S0 since if +(o)-O:-Q. then ewO, J

and hence ¢(z)3o. Near Z=1 on the other hand

f3
- (z)) Zz--

and the derivative satisfies there

-19-



Hence all the eigenfunctions have a negative slope as Z- I . All the

eigenfunctions shown in figure 3 satisfy these asymptotic behaviors near

.the boundaries.

D. The Longwave Limit.

Our objective in this section is to show that there are no more modes

than given by the numerical summation of the series solution (20) (Fig.

2) and to compute explicit asymptotic expressions for the eigenfunctions
d

in the long-wave limit. We thus let C-.K and expand $ in a match-

ing power series in k using the asymptotic form of the recursion rela-

tion for {W. The resulting highest order term in (20) is then Used

to solve for C for the various o4. We first note that on physical
.5 '4'

grounds we have to require eQ.-I since otherwise W:IK(C:K is infinite

in the limit K-v& . When aE>-I we let k- p and get the following as-

ymptotic expressions for R sn (which comprise the leading terms in b n )

-.: p-e ,,.-.)C '>.

7C

For ?>, K4:(oK is of higher order than k and is 0

The problem becomes tractable since is of lower order (in k)+..- s of ower rder in k

than b"w, RSW4Jc ', vnpi and therefore only the n=O, 1 terms in (20)

have to summed in the equation of the leading order term.

The first three line of table 1 summarize the results of this range

of g. Only when o-:2 there exists a non-trivial solution for C in
0

C. 1e namely C-k-. For any (>o,.t4,e . no such solution exists.

- 20 -



When -O.O. j,-:4K is of lower order than k. Thus Nve are

al odrK whil b. is 00 () , on the other hand, is

0(K')>I and therefore the leading order term on the left-hand side of

(20) just 64-). The fourth line in table 1 summarizes this case

ws that in this range of at too there is no non-trivial solu-

Co.

The last case to consider is the most interesting and the most intri-

to one, namely .- I. This case corresponds to WEKCC and is expect-

to yield the high frequency, longwave mode. Since o(=-1 we let

and this implies Ij:--L06o K4 The recursion relation

r (bill is:

Therefore >, I is 0() and the infinite series of (20) has to be

summed. The value of P depends on Co . For C. 2>/ ,j is imaginary and

there are no trapped modes (this corresponds to the shaded area in fig-
2

ure 2). When C zl we get P:k and

4 thus

Using mathematical induction it is easy to show that

Therefore

while

b, .- b. (3 C.

I -21-



The implication of this last estimate is that although ql is 0(1/k)

the highest order term on the left- hand side of (20) is 0().

This 0() term in (20) satisfies

and when the explicit expression for 1 > is Used we get V b,"

The infinite ("telescopic") series is easily summed by writing

Therefore the equation for C0 from the 0(0) term in (20) is

The solution of this equation which also satisfies C#31 is (,:-I. It-t

turns out that the "solubility" of the problem in this C2X " case is

due to the fact that . ,2 is Ok 2 ) while b,. ,- so that

Thus we have verified the two eigenvalues which were found numerical-

ly in the longwave limit of figure 2, namely: 4;-- and W We are

now in a position to get an explicit expression for the eigenfunctions

using the highest order terms in (19). In the eigenfunction of the

LUj S rmode the only 0(0) terms is b. and therefore in this case

,.~b 0,, .(-Z) -j- 0

so that

:. A (Y) =4 0 (Ka

: This is precisely the result we got from qualitative arguments following

% eq. (7). The 0(0) terms of the eigenfunction of the W:-I mode involve

only b0 and b1 , since b .'%' (, . Thus we get

- 22 -
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i CR ,<PI (I-z) o (Z- 0 ((z1 - < '

and therefore

(Y)-o (I - le )4 0 )
KY( - Y 0 ()

From equations (7) and (3) we can calculate v(y) and the hodograph v(u)

for the two modes. For the Cvs;- mode, Q (Y)- be *o{09) and equation

(7) implies ~ y:b~.~~2 .Since k I VtCv equation (3) im-

plies ey)

so that v=-iku + o(k3).

Therefore the hodograph is the same ellipse at all y with motion being

essentially longitudinal and the sense of rotation is counter clockwise

* in the northern hemisphere (where f which is the scaling of t is posi-

tive).

For the W=-1 mode 2"iKezi and equation (3) implies

dt-

Therefore although u diminishes at the free streamline V-;Cb.e , is 0(I)

, everywhere. Thus we see that the motion is transverse near the free

streamline while far away from it v:iu and the motion is circular.

These results are shown in figure 4.

The :-1 mode does not exist for infinitely long waves since when

S=O, v:ib, and requiring L4.oI):0 we get b.:O which implies CRSO

4 This result is generalized in Appendix A where we show that oscillations

.j

I% .. ,, ,;.. .-. 23.. .
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at the in.rti.al frequency are impossible when k=O regardless of the po-

tential vorticity of the basic state.

E. Additional Checks.

Although the analytical considerations in the previous section and in

the end of section C agreed with the numerical results of section C we

carried out additional numerical checks.

The eigenvalues W (k) (Fig. 2) were checked by summing

with W4(4V(). The result was that (k(Z-'I) changed sign at Wz--(l() and

in spite of the divergence of (16) at Z=1 similar results were encoun-

tered when the number of terms summed (N) was 20, 50, or 80.

As a check on the eigenfunctions (Fig. 3) we integrated eq. (8) num-

erically from y=-8 ("infinity") to Y-10-5 with C(k)= W(k)/k using a

fourth order Runge-Kutta procedure. The resulting eigenfunctions were

indistinguishable from those of Fig. 3 and the boundary conditions were

satisfied.

2
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IV FREE WAVES AND THEIR REFLECTION

When ( q i k we have already noted that there is a continuum of free

modes since becomes imaginary. Away from the front (i.e. at Z- I)

there are, in this case, two oscillatory, linearly independent solutions

and the general solution can be written as

+

where

Z6>'

and where 1 .rI~..KJ is real.
• -..

The function 4, represents a wave propagating toward the front from

_-a whereas is the reflected wave which propagates away from the

front. V is the reflection coefficient and if I'rj-1 then

I (P,: )I4¢;I and the wave is reflected by the front without any change

in the amplitude.

If the amplitude of the reflected wave is different from that

of the incident wave. This indicates that energy was transferred bet-

ween the free waves and the mean fj.ow and in this case the kinetic ener-

gy of the front will increase (decrease) provided -y4 (Y'> )

We notice that the case 1-'1=O (V;1) is impossible since then

P 00 (, is complex but which represents the solution at

O:Z Z 2;" ) ;, is real and (the complex) 4, cannot be

matched with (the real) (P in that region. Only when (k is the sum of

two complex functions can it yield a real function in the sub-interval

where is the solution.
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The boundary condition (20) implies

or

(22)

The coefficients satisfy the recursion relation:

Since Rn , S are all real it is easy to show (by mathematical induction,
n n

for example) that is the complex conjugate of b . Therefore in

(22) the nth term in the numerator is the complex conjugate of the nth

term in the denominator and the implication is that fr):i so that the

front does not exchange energy with the free waves and no overreflection

occurs.

Moreover since :1 we can let )':e and then (21) implies

AA

Therefore up to a trivial multiplicative factor, Ol is real and this

is consistent with being real except perhaps for the multiplicative

factor 1

I

I2
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V. DISCUSSION

The unbounded front of figure 1 bears a strong similarity to (say)

the 150C isotherm of the Gulf Stream (Watts and Johns, 1982), but numer-

ous observations on the occurrence of eddies and meanders indicate the

highly unstable nature of the Gulf Stream (Lai and Richardson, 1979).

Since the uniform potential vorticity front of figure 1 has been shown

to be stable (chapter II) the model cannot explain the observations and

we are led to the conclusion that even a small (but finite) gradient of

potential vorticity is of utmost dynamical significance. The effect of

a gradient of the potential vorticity can be studied by either adding it

to the upper layer or coupling the two layers. However, the present

study shows that without it, a geostrophic front like the Gulf Stream

will be linearly stable. This conclusion cannot be inferred from the

existing quasi- geostrophic theory due to the strong surface signature

of the Gulf Stream (Cheney and Marsh, 1981) and the inapplicability of

this theory to surface fronts.

The near inertial longwave stable mode of the unbounded front pro-

vides an explanation for several recent observations of the enhancement

and the establishment of the near inertial peak in oceanic spectra. The

first of these observations is that of Fu (1981) who found an increase

of 4dB in the energy of the near inertial peak under the Gulf Stream

- over that of the Mid Ocean peak. Although this measurement pertains to

the lower layer which was neglected in our model we expect that the os-

cillations of the interface will induce the same oscillations in the

lower layer. The coupling between the oscillations in the two layer is

beyond the scope of this work. The second,,is that of Mayer et al.

r
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(1979) on the seasonal establishment and disappearance of that peak on

the Middle Atlantic Shelf. Both observations' cannot be explained in

terms of a wind generated phenomenon (Stern, 1977; Pollard and Willard,

1979), the first (Fu, 1981) because of its depth (4000m) and the second

because the peak disappears in the winter when the winds are strong and

is quite pronounced in the summer when the winds are calm. The hydrog-

raphy of the water column, however, suggests a strong correlation with a

. sharp front. In the case of Fu (1981) the front is the Gulf Stream and

in Mayer et al. (1979) the front is associated with the freshwater ru-

noff into the shelf water.

An observation even more supportive of this mode is that of Kunze and

Sanford (1981) on the North Pacific Subtropical Front. Not only does

the energy of the near-inertial peak increase by a factor of 4 in their

observation but the increase is observed only in the clockwise (anti-cy-

clonic) component of the horizontal velocity profile. This is in per-

fect agreement with the inertial mode of section III and figure 4.

This longwave mode might also be relevant to the slight shift (a few

percent) in the frequency of the near inertial peak observed in numerous

oceanic experiments (for example Fu, 1981; Kundu, 1976; Gonella, 1971;

Perkins, 1972; Webster, 1968; Day and Webster, 1965). For small but fi-

nite k the frequency of this longwave mode is slightly above the iner-
I. 0.2f

* tial frequency with a maximum shift of 2.2% ((W=4n ) at k=1. Other

theories provide an explanation for this shift in the presence of wind

(Stern, 1977; Pollard, 1970) or randomly distributed sources (Munk and

Phillips, 1968). Our model indicates that a sharp horizontal tempera-

ture gradient can also cause the inertial peak to be shifted. The prox-
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imity of this long inertial trapped wave to the shaded region of Fig. 2

provides a possible mechanism for its excitation by the free waves. The

suggestion is that the front acts like a one-way mirror whereby long

free waves with frequency slightly above the inertial which travel

across the front excite the inertial trapped mode. The details of this

excitation involve a wave-wave interaction theory which is beyond the

scope of the present study.

The low frequency long trapped (W'- X -oo) indicates that an in-

crease in the low frequency energy should be observed in the vicinity of

fronts. We are not aware of any such observation. One possible expla-

nation for this, is that this mode is far from the boundaryW #K and

thus cannot be easily excited by free waves having only slightly diffe-

rent frequencies.

Another explanation is that the neglected gradient of potential vor-

ticity, as well as, a finite den+h of the lower layer, will overwhelm

the slow, low frequency mode but will have little effect on the fast in-

a
ertial mode. This slow mode &'K is expected to become unstable when

the potential vorticity is not uniform and the waves are finite but long

(k is small but finite). The inertial mode propagates too fast and a

small gradient of potential vorticity is expected merely to alter the

(real) phase speed.
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VI CONCLUSIONS

A. An unbounded single layer geostrophic front of uniform potential vor-

ticity is stable at all wavelengths.

B. An inertial long trapped mode exists on such a front and can easily

be excited by the free inertial waves.

C. For small but finite k the frequency of this trapped mode is slightly

above the inertial frequency.

D. Trapped waves of finite frequency cannot exist on the unbounded front

when the wavenumber is zero regardless of the mean potential vorticity.

03
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APPENDIX A

The result of chapter III that the inertial mode of the unbounded

surface front ceases to exist for infinitely long waves is shown in this

appendix to be of a more general applicability. We will show that infi-

nitely long trapped inertial waves cannot exist on a geostrophic front

regardless of the mean potential vorticity.

Setting C'K-O and following the geometry and scaling of chapter

II the x and y momentum equations and the continuity equation of the up-

per layer are:

-" -7 0  (Al)

' ,. , .=_ (A2)

(A3)

The basic (mean) state is assumed to be in geostrophic balance

(A4)

When the mean and perturbations are separated (:L&' h:b and

when we set j2 the linearization of equations (A1)-(A2) yields
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I !I

-# (A6)

ay (A7)

where (A) has been used in the second eq. of (A5).

When (A5) and (A7) are used to replace u' and 2 . in.(A6), respec-

tively, the result is

Carrying out the differentiation in (A8) and multiplying it by h we

get

or

C)Y _-(A9)

We assume now that the front is either bounded by a second free

streamline (where hzo) or a wall (where v' vanishes) or that it extends

to infinity (where v' vanishes for a trapped mode). Multiplying (A9) by

v' and integrating the result between the boundaries of the front where

the boundary term vanishes we get

One trivial solution of (A1O) is v':o. This corresponds to solutions

of (A5)-(A7) with either W:O in which case A- - or u':o:h'. Both

represent trivial solutions: the former is merely a change in the undet-

ermined amplitude of u, h and the second is the zero solution.
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•

Since the integrand in the first integral on the left- hand side of

(AO) is positive, eq. (AO) can be satisfied only if W>1 while if

W4 I there is no non-trivial solution.

For an unbounded front far away from the front h=1 and in this region

(A9) becomes

4' 1 Lr 0(All)

In order for the solution of (All) to represent a trapped wave which

decays at infinity (j41 has to be satisfied, but in this case (AlO)

cannot be satisfied. Therefore, on the unbounded front there is no

trapped mode except for the trivial solution

If the front is bounded by a wall or by a second free streamline,

then there are non-trivial solutions with W.>I
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Legend to Tables and Figures

TABLE 1. The highest order term in (20) in the limit 1<40 and the re-

sulting solution for C in C=C k for various a.

Figure 1. Unbounded surface front with uniform potential vorticity. The

lower layer is assumed inifinitely deep and non interacting

with the upper layer.

Figure 2. The" dispersion relation for the unbounded front. The shaded re-

gion W >J.& represents a continuum of free waves whereas the

a a
various curves with WU-IK represent trapped waves. The .:-I

mode exists for K>O only.

Figure 3. The eigen-functions z.) representing the perturbation down-

stream velocity as a function of the depth of the upper layer,

for k:3. The eigen-functions were produced by using the ei-

gen-value indicated near each eigen-function and summing 20

terms in eq. 19.

Figure 4. The ellipse of rotation of the two longwave modes Note that

the inertial mode i3 rotating clockwise.

L

4
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The intrusion of a density current along the coast of a
rotating fluid
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When light rotating fluid spreads over heavier fluid in the vicinity of a vertical wall
(coast) a boundary jet of width L3 forms, the leading edge or nose of which propagates
with speed 6 along the coast. A certain fraction 4 of the boundary transport is not
carried by the nose but is deflected backwards (detrained) and left behind the
propagating nose. Theoretical and experimental results for L, e, and 8 are given for
a quasi-equilibrium (constant-e) regime. Over longer time intervals the laboratory
observations suggest that the nose slows down and stagnates, whereupon the trailing
flow separates from the coast and an intermittent boundary current forms. These
processes may be relevant to the mixing of oceanic coastal currents and the
maintenance of the mean current.

1. Introduction and statement of the problem

The way in which rotation inhibits the lateral spreading and mixing of a density
current is illustrated by the Rossby adjustment problem (Saunders 1973; Stern 1975,
chap. III). In the initial state a circular cylinder of radius R, height H and density
p is resting in a frame rotating with angular velocity if, and is surromded by a deep
resting fluid of density p + Ap. Gravity then causes the cylinder of uniform potential
vorticityf/H to collapse vertically and spread horizontally, with individual columr.s
tending to conserve potential vorticity. A balanced geostrophic (cyclostrophic) vortex
may then result, in which the surface front advances only a distance AR - (g*H)if -

of the order of the Rossby radius of deformation, where g* = gAp/p. The vortex may
be unstable, and more than one vortex may form if the initial radius is large compared

6 with AR (Griffiths & Linden 1981).
The adjustment and the overall mixing process is drastically altered, however.

when there is a vertical wall (figure 1). Although the adjustment of the semi-infinite
light fluid is essentially unaltered at large distances P from the wall, a boundary
current near.0 = 0 must develop to accommodate the geostrophic flow into the wall.
This coastal current transports the light fluid away from its source region, and

* thereby allows mixing to occur over much greater distances than would occur without
the boundary (Wadhans, Gill & Linden 1979). What is the width of the boundary
cuurrent: what is the nature of the leading edge (nose) of the coastal intrusion; is the

"0
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/ (a)
A

/ p+ Ap

-F,2
ALR f
~t

P p + Ap (b)

FlOURyZ I. The initial stage in the rotating dam-break problem when a vertical wall (P 0) is
present. The semi-infinite upper fluid has density p and the very deep lower layer has density
p+Ap. The top view (a) shows the surface front advancing a distance AR at position far from
the wall. But the geostrophic flow that develops runs into a wall stagnation point and a coastal
intrusion must form. The vertical section (b) shows the equilibrium front far from the wall.

boundary current laminar, and if not, how does it mix into the adjacent water? These
questions are addressed here by a combined theoretical and experimental study. The
-xperiments (see §2) consist of lifting a vertical gate ('dam-break' experiment) which
was initially in the position of the dashed line in figure 1. The thin layer of light water
(p) in this figure then spread laterally and was deflected to the coast, where a
boundary current finally emerged. The dimensional width of the latter was
measured, as well as the nose speed of the density current. Considerable lateral
detrainment from the seaward portion of the nose was also observed, this effect being
somewhat similar to the vertical detrainment through the interface of a non-rotating
intrusion in a two-layer fluid (Britter & Simpson 1978; Simpson & Britter 1979).
Benjamin (1968) has given a theory for the latter case, the experimental agreement
bcing good in a limiting regime where the detrainment is relatively weak. Our theory
of the rotating intrusion therefore begins (§3) with the generalization of Benjamin s
theory. We (10 not, however, neglect the (experimentally) important detrainnent
effect. Another notablh novelty ofour problem is the additional horizontal dimension
and structure of the fluid behind the bore. We identify those regions where the flow
is approximately stead*y. and also those unsteady regions in whith th- important
dctrainment occurs. With these additional considerations Benjamin's theory fir the
nose slpedl will obviously not close, anti additional constraints on the trailing current
art necessary. For this purpose we advance (§4) a model and a similaritv solution.
which predicts an upstream width (ef. equations (4.31). (C 23)) for a so-(alled * limiting
bore* (Stern 1980) which agrees closely with experiment (equations (2.1). (2.2)). B*v
combining the model with Benjamin's formula, a nose spec(l and (t' iainmcnt
(,efficient art predicted which are also in acceptable agreement with experimcnt-.

The reader should be warned, howevetr, that the, simple theoi-v 'Orresl).nls to) a

different initial-value pro)blem than does the con plex experinent and it will he
argued thac a ctnnect ion I)ttween the twot exists at later times. In view ofthe admitted
weakness of "his argument, an alternative dvrivat ion of one main thcretival resull.
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involving much weaker assumptions, is given in appendix A. This leads to an upper
bound on the width of semi-permanent intrusions, and any wider initial state could
not propagate along a coast before it suffered great alterations (e.g. bifurcation into
a thin current which leaves the wide current behind).

2. The laboratory experiment
2.1 Set-up and procedure

Although the problem in which a heavy (tensity current intrudes on the bottom of
the rotating tank will have similar properties, it is experimentally more convenient
to work with a surface intrusion so) as to minimize Ekman friction and to eliminate
totp)graphic effects due to the slope of the bottom relative to the level parabolic
surfaces.

The experiments were conducted in a rectangular tank which was made from
Plexiglas one-half inch wide. The tank, sketched in figure 2, was 183 cm long, 29"2 cm
deep, and 20 cm wide (inside dimensions). Grooves were cut into the sides and bottom
of the tank at various places in order to allow a sliding gate, of 22-gauge stainless
steel, to divide the tank into two chambers. The grooves were approximately 2 mm
wide and 3 mm deep. Since only one set of grooves was used at a time, the unused
grooves were covered with cellophane tape to make the walls smoother. A mirror was
placed next to the tank at an angle of approximately 450 so that an observer who
was looking down from above could see both a top and side view of the tank. The
tank and apparatus were mounted on the two-metre turntable at the Woods Hole
Oceanographic Institution. The shaft of the table had been levelled to better than five
seconds of arc. A 16 mm motor-driven cin6 camera was rotated in synchronization
with the turntable so that films coulh be taken of the flows in the tank with the use
of small paper floats that were sprinkled on the surface of water in the tank.

For each experimental run the tank was first filled with tap water to a depth of
18"7 cm. The temperature of the water matched the temperature of the room to within
0"1 *C, to minimize convectively driven flows. A measured amount of salt was then
added to the water, and mixed thoroughly in order to eliminate the slightest
detectible stratification. The gate was then slid into the set of slots that were 49 cm
from one end of the tank. The bottom of the gate was 10 cm above the bottom of
the tank so that pressure equilibration existed. Two pieces of one-quarter inch
plywood were then floated in the 49 cm long chamber, the tank was covered by a
Plexiglas lid, the turntable was brought to the desired rate of rotation, and the salt
water was allowed to spin up for 15 min to a state close to solid-body rotation. The
preparation for the experiment was completed by slowly and carefully siphoning some
coloured fresh water onto the plywood floats in the small chamber until a desired
depth (2, 4 or 8 cm) of fresh water floated above the salty water. The density of the
two waters was not measured directly but was estimated by means of a linear curve
of density as a function of weight of salt added to the bottom water. Fractional
density differences Ap/p in the experiments were estimated to be 2'1. 32. 4"3. 8"7.
13"1 or 17"5 x 10 - 3. All these values are below the densities which were in the table
in Hodgman (1961). The curve we used was a linear extrapolation from the one
and two per cent values in the handbook. Errors are less than ten per cent, and to
this accuracy, temperature and potassium permanganate have negligible effect on
density.

,lust before the experiment was started, the Plexiglas cover was removed from the

4
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FIouRE 2. Sketch of the experimental apparatus.

tank, the cin6 camera was started, and the sliding gate was carefully removed. In
order to reduce the dripping effect from the emerging gate, a foam wiper was placed
on each side of the guiding frame through which the gate was slid. The foam wipers
were positioned so as to just contact the surface of the water after the coloured water
had been put in. Use of the wipers and the guide frame in removing the gate resulted
in a less-disturbed starting interface between the light and heavy fluids.

2.2. Measurements and analysis of data
After the gate was lifted, small paper floats were sprinkled' on the radially collapsing
dye front in the channel, and cin6 pictures were taken of the side-view mirror as well
as the plan view.

The method of analysis was strongly tailored after the features of the flowing bore
that were observed. The principal features of the bore (sketched in figure 3) are
somewhat visible in figure 4. The nose of the bore (figure 4a) was not steady, but
eddies peeled off the outer region and were left behind with a much slower
translational velocity than the nose of the bore. On the wall immediately behind the
nose was a ' ne(k', which was often the thinnest and shallowest portion of the laminar
jet behind the nose. Although the neck was visible a sizable percentage of the viewing
time. it was sometimes obscured by the edge of an eddy that had been detrained from

" the nose. Behind the neck were two regions. Near the wall an approximately laminar
current supplied fresh fluid to the nose of the bore. This current was bordered on the
outside by a region of -strong cyclonic vorticity ('vortex sheet '). which separated the
current from a region of eddies. These 'large-scale' eddies were complicated and
turbulent in appearance. Some had been generated from the detraining process at
the nose of the bore and some seem to have been detrained further upstream as
illustrated more clearly in figure 4(b). Particles in the laminar current near the wall

, II appeared to speed up and slow down as the eddies deformed the outer edge of the
jet. but the particles in this current did not reverse direction relative to the nose.
while the particles in the eddy region clearly did. There are many instances in thle

I!

4
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l 'IO;URE 3. Schematic diagram of a quasi-equilibrium rotating lIore far from the source region. The
streamlines show the motion relative to an observer moving with the nose speed r . The relative

~other side of the laminar vortex sheet (& = £). andi is left behind as the nose propagates along the

coast.

eind films when it was difficult or even impossible to distinguish the laminar current
from the eddies, but there are other instances when it was easy to distinguish between
the two. In those eases the eddy activity was small outside of the laminar (current.
andi the region separating the boundary current from the eddies had a strong shear.
The continuity of this vortex sheet is visible in the (.ine films, and more so) to the

~eye while the experiment is running. We have therefore attempted1 to quantify the

width of the boundary current by measuring the distance from the vortex sheet, when
visible. to the wall.

The measuring procedutre was to set up a cin(; projector at a set distance from a
p)iec'e of white cardboard screen. An investigator (,1. W.) woulht sit next Ih) the screen

_ anti loo0k fo~r (lear instanc~es of the vortex sheet. When ore was sighted. tlividers wouldI
• b1w Pf~(a'(d on the sc'reen, with one point on the vortex sheet and one on the tank wail.
:. The projector was then stopped1 as promptly as possible, and the (distance from the

spani of the dividers measured. With the projector still stopped, the (orrs)onding

wall depth of the dyed fluid (in the 450 mirror) was also measuredl with a ruler andi
dividers. The time and dotqwnstream location of this feasurcment were recore. as
well as the nose location. This trocedure was repeated in each run until measurements
were taken at all positions of a (lear vortex sheet. The number of sampteles in each

run rangedl from two to sixteen according to the quality and the subjec.tive
identification of a vortex sheet. We intentionally ran as many extreme values of t"

and!f as possible (see table 1 ) in order to sample a wide varicty o~f paranieter space.
54) some runs are ('lose to marginal in quality. \Ve emp~hasize. howve'r, that an
,nmistakalhe (lifferene exists between this 'vortex sheet and the ltnsi or cre

t front, aside from the fact that a recis measurement of te latter is also amliguots

bandi (iffult.
The reason for the qu, alitative difference is uit('hlar from the eddi s rat s. l )yad

flu i that entered the nose (figure 3) exiteh in the rear and was left lx'hind as an tdde
ior da as the nose marched on. Alt uigh this was a ma j ttr evont e the ong-time

mixing of (ensity (andi also -ortiv) in tl'h )u ndary (tirr'nt. it was thcarlv a
secondary effect, and, in order to determnin the prinar idt h f t he Ia)tfndar

('urrent. it is quite rcasoale to bias the oservations towards a rJ'asu r('od nnx of t li
shear lines. The ninstaber of tind'endcn ' and usableh icasurnints ofd in ec h run

li lcdoltesrewt n xitontevresetadoeoltetn al

Th rjco a hnsopda rmtya osbe n h itnefo h
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(a)

(C)

(d)

FIGURE 4 (a-d). For caption see facing page.

is shown by the numbers inside the circled data points (figure 5). The plotted E is
the average distance from the wall of the points of maximum lateral shear in eaech
run, and h is the average value of the corresponding wall height. [The measurements
of f, and A were confined to a certain space-time interval that, is determined by'
theoret ical and practical considerations. Thus no measurements %%ere taken until
some time after the gate was lifted, and no measurements were taken after the njose'
reached the end of the tank and started to wind around the tank. No (f, A)-
measurements were taken in the nose of the bore, or at very large (distane,, uipstream



... . . .. . . .

*.FiGURE 4. (a) A rotating ,lensit.N current in its earN stage propiagatinug alonig t he right -hand %% all
of the tank. The image on the top is viewed throuigh a 45' mirror and( is it side view% oithe current
with gravity downward in this figure. The image on t hi hottorn is a pilanx vi,. The parameters
are g*= 8-5. T = 15-4 and H = 8-7. (b) The same current IS s later. The prioperties of the no.
such as speed. upstream width, and height. have chaniged little, althm. igh the eddies living shed
are a little smaller. (' ) The same current 31 s after (a). Thif current ex~hibits at great heal of sirnilarit v
to (b ). (d) After t he- current has hit the endI of ti(- tank. it turn s Ow he o-ur . The sidle v iea shows

* . the depth of penetration of the flujid at the corner stagntion point. anl ilist rates thait1 thfuid
* ~still possesses a significant amount of its iriginal potential energy. (u ) I is intrui on (I'lani view) wAas

at a relativelY low Revnolls numbher. andl the eddY that is becing shed at the nit is almtost lamninar.

from the nose, and onl ' a relat ivelv small n umiber o' measin reinttits %%ere t akent ini
the 'neck' behind the nlose.

'oerso ofth ciut- film mevasuremnents to real centimetrc "e~a., (Ihtcritite
o ~ ~ ~ fom the image of .) cm tidttciary mtarks itn the side anid oqpi ituagvs. lit In th Ii ams.

tit) correct ion was mathe for parallwN as t hie b)1 imt'vet a 1 tL t ) tatnk . sintce k~

estimate that the geometici correctuins are smaillehithan thei utoilaittt\ du ituet t ite



244 M. E. tern, J. A. Whitehead and B-I,. iua

06- (a) 8 (b)

05- 16 [
0.4-•
0 3 0 0 1 . 0

-- 0- 0.61 •

(c) 0.8 d)
16 13

A 0" '1 ? ^ 0"6-
A__ ? 13fL46 gA~ 7 _8--_4T1515'0-4 8 96 6.) 0.4 8 4

0-2 0-2

10 15 20 2'5 0o 10 1 S 2'0 215
g*IPH g*IfH

FIoURE 5. Suitable normalized values of height (a), bore nose velocity (b). and bore width for 90
gate (r) and 450 gate (d) as a function of the hydrostatic number. The numbers in (r) and (d) denote
the number of observations of regions of distinct shear that went into the average.

4

T(= 4n/f) H
(cm/s) (s) (cm) g*/f2H (g*H3)I/y fL(g*h)- r(g*)I hn.e/H

17-15 14-5 4 5-84 3313 0495 1.19 0"438
17-15 15.0 4 6-27 3313 0-494 1.19 -
12-8 20-25 4 8"5 2862 0-435 1-12 0-375

3-1 59-6 4 17-8 1408 052 0-98 0-400
3-1 406 4-2 7-68 1515 0-42 074 0-500
8"5 30-I 4 12-5 2332 0-37 1-25 0571
8"5 15-4 8-7 1-57 7481 0-605 1-65 0314
8-5 29-4 8 6-20 6597 0-382 1-64 0450
4-2 15-3 4-6 1-24 2022 0-763 0-85 0-215

12-8 30.5 6-0 12-6 5258 0-387 1-37 0-542
2-I 60-7 3-0 16-3 753 0-435 0-82 0.318
3- I 59-3 4-0 17-25 1409 0-343 1-14 0.414
3-I 60-6 3-0 24-03 915 0.369 0-87 0-50X)
4-2 21-9 40 3-18 1640 0-632 1-04 0-357

TABLE 1. 90 Experimental parameterm and results.

subjective factor entering the measurement. Data for the experiments are shown in

tal)Ies I and 2.

The measurements of depth and width were used in the non-dimensionalized
number ff(g*4) -i in the above tables, and the results were plotted as a function of

q*/f'H in figure 5. This latter number we call a -hydrostatic number, as it is the
inverse-square ratio of the thickness Hf of the less-dense fluid layer in the reservoir

and the Rossby radius of deformation. The reciprocal hydrostatic numlber is also a

measure of the slope ofthe undisturbed front in the vertical plane sketched in figure I

In shallow-water dynamics. and in most other large-sc-ale geophysical problems the
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T( = 4n/f) H
((.1/2)  (S) (cm) 9*lf2 H f/g*A)-

17"5 14"5 4-4 5'18 0-48
12-8 20-4 4"0 8-43 0-47

31 ! 59"6 4"0 17-4 0-45
4"2 2111 4'0 3-18 0-73
8-5 15-5 8"7 1"49 0-80
8.5 29'3 H.0 5'78 0-49
3- I 60-5 3"0 24"03 053
8"5 30"3 4-0 12-35 0-46

12'8 30"4 6-0 12"48 0-37
4-2 15"3 4-6 1II 0-86
3"1 59-3 4"0 17-26 0"38

TAHiF. 2. 450 Experimental parameters and results.

hydrostatic number is large and irrelevant, since it disappears with the introduction
of the hydrostatic assumption. This might not be true for engineering or some
estuarine problems, however.

Figure 5 shows that when the hydrostatic number is above five, fL(g*A)-i is
relatively constant; for the data in figure 5 and table 1 with hydrostatic number
greater than five, the average value is 0-423 with a standard deviation of 0-056.

In view of the subjective and arbitrary factors in the measured width, three
reproducibility tests were conducted. Experiments were performed for two initial
con(litions: a gate at right angles to the wall of the tank, and another at 450. The
quality of the latter experiments was somewhat lower. but it was attempted to
duplicate the external parameters (g*, H andf) as closely as possible and to compare
results. Both results are shown in figure 5. For the 450 gate the average value of the
width for g*/f 2H > 5 is 0-453 with a standard deviation of 0-051. The most severe
reproducibility test involved the use of a student to re-analyse the movies! Approxi-
mately 50 o0 of the data agreed with the measurements by.J. W. to within 10 ,. This
oc(curred for those runs where the vortex sheets were clearly the most visible and least
ambiguous. There was one period at the beginning of the test where the student was
consistently lower by approximately 50%. This occurred during one afternoon and
ma'v he due to a (onservative streak during that (lay. The remaining 20 %o were also
somewhat smaller than the measurements by J.W., but appeared to be better in
quality. Therefore ,J. W. repeated his measurements very carefully. and those data
are reported here. These occurred in the experiments which were most difficult to
me-asure denoted by question marks in figure 5.

Another check on the quality of the data was to look at the cin6 films at one sitting
4! and rate them good or marginal. based upon the clarity of the vortex sheets seen in

the films. (As is often the (ase, the vortex sheet is easier to see in the laboratory than
it is in the film because the movement of head and eyes aids the perception.) 'l'he
marginal ones are labelled with a question mark in figure 5, and they only occurred
when y* was small (2-1 or 3'2 (m s-2 ). Under the latter conditions surface tension may
gen(erate a surface "stiffness' by (reating a surface traction against convergence andI
divergence. It is evident that some of the marginal cases were furthest from the line.
The curves for £ in figure 5 have been drawn by eye, and are slightly biased by

the prece(ing eonsideration, but the asymptote at large hy(lrostativ number seems
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F RFs7. Position of the nose of the bore as a function of time for runs that lasted a large
number of rotation time scales.

to be highly significant and relevant to the theory in the following sections. Thus we
tentatively conclude that there is a unique width for the shear zone for the large
hydrostatic number, with

("*AL = 0.423 ± 0.056 (2.1)

for the 900 barrier, and
. f]

. = 0"453 + 0"051 (2.2)

for the 450 barrier.
It is conceivable, however, that there may be not one curve, but a whole band of

curves, i.e. the jet width may not be unique but may depend on other factors which
are not within our control - such as the instability waves that. form on the front in
the reservoir when the barrier is removed.

This point of view is also suggested by the measurements of bore speed (figures
6a. b). which were only taken for the runs with a gate at 900. The ordinate is the
non-dimensional displacement of the nose bore from the dam, the abscissa is the
non-dimensional time, and the points are the observations for each run. The
identifying date and run numbers are also indicated. The curves drawn through these
points have smoothed out some small variations in bore speed that may be real. A
decrease of slope with increasing time can be clearly seen in some of the runs, and
after very large times (figure 7) some of the noses stagnate and curve away from the
wall forming a large gyre!Trhe lack of'similarity' of the curves is apparent. For each

l (curve the extrapolated (small time) tangent has been drawn, and the corresponding
non-ldimensional speed (g*A)- computed. For figure 6(a) the mean speed is c = 1"09.
and for figure 6(b) it is r = 1"16. In both figures the variation of e is real, but no
correlation with .*/f 2H has been found. Figure 8, however, indicates some systematic
variation of with the product of the velocity scale (g*H), and the depth scale H;
and therefore the results (figure 8) have been plotted as a function of the overall

e Reynolds number II(g*JI)1 , i. even though the viscosity was not varied in the
eXperiment. The implicit assumption here is not unreasonable, because Simpson &
Britter (1979) observe that the nose speed in a non-rotating density current depends
on Reynolds number when the latter is less than 10 '

3. The dynamically significant

6I
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Reynolds number may be a proportionally smaller value for three reasons: (i) the
depth of the jet is less than upstream height H (figure 5); (ii) the depth of the jet
varies across the stream and goes to zero; and (iii) the depth of the nose is small and
goes to zero at the leading edge. At large Reynolds number (> 4000) the envelope of
the data tends to c = 1"56 with a standard deviation of 0"05. At smaller Reynolds
number the phase speed is approximately 20 % less. It is plausible that the systematic
effect of the nose viscosity on the upstream width (figure 5c, d) is less than or equal
to this 20%.

3. A quasi-steady theory for a rotating density current
Figure 3 is a schematic diagram of the nose of the boundary intrusion as it is flowing

along in a statistically steady state. The streamlines are drawn relative to an observer
who moves with speed of the nose of the intrusion (and in this frame of referen(
the nose is thus a stagnation point).

Under ideal eonditions one would like to consider the light fluid to be separated
from the heavy fluid by an interfacial surface that intersects the free surface (i = 0)
at the 'front'; the latter being a free streamline and a vortex sheet. This idealization
differs somewhat from a more realistic sketch (figure 3) of our experimental
observations, which shows part of the boundary flow entering the nose region and
being left behind (detrained) as it folds the front backwards. The sketch in figure 3
illustrates the continuous nature of the fields and replaces the vortex discontinuity
of the free streamline by a strong maximum-shear line (at f) lying outside the
dividing streamline. The width f that was actually measured in the experiments
corresponds to this strong maximum-shear line. Another dynamically significant
width is the dividing streamline (figures 3a. c), located at distance 9,/ from the wall.
The distance Ya is defined such that the mass transport relative to the nose vanishes
in the interval 9 = 0 to 9 = .. i.e.

rJd (fi - d.4 = 0, .)
JO

where 6 is the longshore (i) component of the vector velocity V in the non-translating
(f-frame) system, and 1 is the local laver thickness of a two-layer model. All the
quantities in (3.1) are evaluated far upsiream frin the lnsc (.? = - _ ), in a region

_ _ __o
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FIGURF 9. (a) For a non-rotating dam-break problem, the initial-value solution gives a thinning
wedge' for the shape of the intruding light water of density p. (b) The non-rotating bore in the

quasi-equilibrium Krmin-Benjamin theory.

9 < Yd where our observations indicate the flow to be approximately steady anti
laminar. On the other side of the dividing streamline, however, our observations
indicate a much more unsteady and non-laminar flow. Thus a conservative Bernoulli
function exists for the region inside the dividing streamline, and this function is found
by transforming the equations of motion from the f-frame to a frame that translates
with relative speed e.

If,5 is the pressure, and if is the height of a point above a level surface in the
f-frame, then the e-frame velocity V, satisfies

dV/di+fk x V,+fk x t = -p-' Vfi-gVi.

A Bernouli equation may be formed from this by taking the scalar product with the
solinoidal V, and writing the result in the form

(J2 di dii +f)2 -WF + f T = W.+ N d

If the motion on any free-surface (p = constant) streamline is steady in the
translating frame, then the Bernoulli function

B = JV +fep + gi (3.2)

is invariant, anti this assumption will be made for certain regions in the flow.
Reference is first made to Benjamin's (1968) selective use of the Bernoulli invariant

for the problem (figure 9) of a non-rotating density intrusion. Von Kirmgn (1940)
proposed a completely steady solution, but this does not exist. The main region of
unsteadIiness is located in the hatched region of figure 9, which region is somewhat
analogous to the unsteady lateral front in our problem. We shall, therefore, follow
Benjamin by assuming invariance of (3.2) in regions removed from the mixing sites.

Steady relative motion is now assumed on the free-surface streamlines located at
= 0, i.e. along the two streamlines passing through the stagnation point. At 1 =

in the heavy-fluid region. the velocity V relative to the nose is given by ii = -c,
and the Bernoulli invariant then gives:

fe, = A. (3.3)

4 where Z, is t he geopotential height of the stagnation point. The other streamline lying
in the light-fluid region yields:

01-= +g s, (3.4)

where 4, is the velocity (V) ani Z- is the gcopotential far upstream from the nose.

I't

I,--
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The ciiininat ion of Zs gives

(- - )2 +gL_ = i". (3.5)

Since the geopotential height of the upstream free surface on the wall is related to
the layer thickness A by the hydrostatic consideration, i.e. (p +Ap) ^ = Ap 0. one

Can rwrite (3.5) as + h=

where y* = gAp/p.
In the non-rotating theory with no detrainment 4-, is a constant equal to , and

the use of this gives e = (2g*A0)i. Although a mass flux relative to the nose is always
observed (Britter & Simpson 1978), the quantitative effect on ?, of this detrainment
is small (in a limiting case), presumably because of the strong opposition of
gravitational stability.

But in our problem (figure 3) lateral detrainment can occur without great
gravitational opposition, and the effect is indeed most striking in our experiments.
We will therefore reject the assumption that the upstream volume transport of the
intrusion (relative to the nose) is zero, and the finite ratio of this transport to the
absolute transport, i.e.

]'(ft -e) A(P) dc

6 (at c=-oo). (3.7)

will be cailed the detrainment coefficient. Furthermore, ?I(- o. ) is not independent
of P, and therefore additional information is required to determine the wall velocity
4-_, = a( - OC, 0).

The reader may want to turn to appendix A at this point, where Bernoulli
invariance is also applied to the dividing streamline, and where a simple argument
leads to an upper bound on #d. The following argument, on the other hand, claims
to give a sharper prediction of the width of the current to use in connection with (3.6).

4. Intrusion of finite potential vorticity
What are the dynamical factors that determine S?. g. As a start, we are obliged

to introduce rather drastic assumptions, one of which, (see §4.3), involves a
recognition that the experiment involves a 'self-limiting' process in which certain
factors (f, e. S) are largely independent of the initial conditions. Another assumption
is the use of the shallow-water equations

dV/di+fk x V = -g* VA. (4.1)

44/6+V-VA = 0 (4.2)

as the starting point. These apply to two layers (figure 1) of slightly different (Ap)
densit, the lower layer being relatively thick and passive. The upper layer has
thickness A(!, !). i) and velocity r = 0, '). There is a vertical coast at .0 = 0 so that
the transverse velocity is P(!. 0, i) = 0. and there is a free streamline at != f=(. i)
so that A(!, f(.P. i). i) = 0. The neglect of the friction forces in (4. 1) must be kept inmind. especially when one considers explicitly the nose region.

Relevant initial-value solutions of (4.1)-(4.2) arc still difficult to obtain. and we
shall therefore retreat still further to a generalization of Stern's theory for the
evolution of long waves ( a uniform potential vorticity current. Plausible similarity
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assumptions (cf. (4.29) and the last paragraph in §4) will be made which relate thme

evolution of the long-wave solution t~o a correspondIing state of the exIK'rinient.

4.1. Long-wve equations for uniform potential vorticity

Le-t us first write (4.1) in the alternative form

aV/d + (f-4+)k x =V(g*li+ JV2), (4.3)

=k-VxV, (4.4)

and the conservation of potential vorticity (f + e)/Ii is also implied. Therefore, if the
initial state has uniform potential vorticity f/If. where I? is the uniform initial
vertical thickness, then f+e 1 45

at all subsequent times. The componett of V parallel to the coast is dlenoted by 0.,
the !/-'omnponent is denoted by il% and the foregoing equations an- made non-
dIimensional by the transformations

A hoh(x. y. 1). fl = (g*h)f -y, 1 c1(g*ho)ifi1x.

2=(gh 0 Iv ih,)6.',(.6 (4.6)

Il h0H,£= (g*h 0)if1Lx1) (..t)=0

where h, is a given vertical depth scale, and c is the scale value of cross-
st rea m/downst ream velocities. In figure 3(b). and in that which follows, A, is
con1venliently taken as the wall height of the intrusion far upstream in the laminar
portion of the coastal current, and from geostrophy it follows that g*h~/2f equals
the % olume flux.

W~hen the non-dimensional equations are written in Cartesian form, and when the
long-wave (e - 6) limit is taken, the result is

u h Nk k

it = _ h(4.9)

h u h

N-- = h 4.0
* y H'

It is easy' to sh ow (by taking the y-derivative of (4.7)) that (4.7) is satisfied at all y
if it is s at isficd at any~ one- particular y, and if (4.S)-(4.10) are satisfied at all y.

Equations (4.8) and (4.10) give an ordinary differential equation for h. and if! V(x. 0)
dlenotes the value of it on y 1, (where h = 0) then the solution is

0 h~l(.. .) 11 1~ -cosh '-Y] + I11'sinh (4.11

i(r. y. ) - 11 ___ n h(' Uosh L-y (.2
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The zero- pt ential-vorticity limit H-1 - 0 yields N4rn's (199)) results with
h = 17(L-y)- (L-!I) and i = 1- /!,t.

4.2. Ti'impedrlish't 'qumix

W 'hen| profiles of a and h are sul)stitut4d in (4.7). and the result evaIluate(d at the
partivular y = h (where I -Du/fy = 0), we get

W - +  _Ox 7N_ 0. (4.13)

Note that v appears only in (4.7), and its coupling with (U, L) only appears via the
boundary conditions, or via the integrated version of (4.9). viz

f fL(x.L) 0 CL(Z,O)
M J ,+ d j uhdy = 0. (4.14)

The substitution of (4.11) and (4.12) in this, and the simplification of the result using
(4.13). yields

1]~ ~ (17 H-1 sinh L- eo 1 111ohl sn

L - cosh L si L] (4.15)
" "+ [UH -! cosh L- - sinh/- Lx coh L_ '

which together with (4.13) form a complete set of quasi-linear hyperbolic equations
for the position of the front L(x, t) and the velocity U(x. t) along that free streamline.

The thickness of the fluid on the wall as obtained from (4.11) is

h(x,o,t) = H 1 -cosh 1+HiUsinh --L ,  (4.16)

and by using our normalizing condition h(- o. 0. t) = I we get the boundary
condition for the upstream state section (curve PWQ in figure 10):S[ Lj] , -oo

1=H [-coshH--1+HiUsinh II at x oo. (4.17)

The non-dimensional H is inversely proportional to the potential vorticity. and the
simple case of zero potential vorticity may be obtained from (4.15) and (4.17) by
expanding the hyperbolic functions in an L/lt1 power series. By neglecting small
terms of order L/HI we then get

I __+ (I,_L)(I _I) +II,(('-_L)-"=0. (4.18)
N 2 2X

I = L(('-IL) at x=-or. (4.19)

4.3. Sittilarit! solution.s

There are no solutions of (4.13) that preserve their form, an(d the 'simplest. solutions
are those in which the functional relations between L(x, 1), I'(x. 1). h(x. (). t) are
independent (f timve and position r. (We also note that the exix'rimental relation

K
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between £ and A is 'universal'.) Therefore, we now look for solutions such that UT
is some (unknown) function of L(x, t) alone, i.e.

U 17(L), (4.20)

0U ',L) I- (4.21)

'( ) -. (4.22)

Upon substituting this in (4.13) and (4.15) we obtain two simultaneous quasilinear
equations for (UL/at, UL/ax), the first. of which is

aL UU',(L) N,
t +I,'(L)- ax -= 0. (4.23)

This implies that, L (and U and h(x, 0. t,)) is constant relative to an observer moving
with the local propagation speed

dx U
dt = 1-1/U'(L)' (4.24)

When (4.20) is used in (4.15) we obtain a second quasi-linear equation for L/at and
L/ x. Elimination of these two derivatives from the two simultaneous equations

gives a quadratic equation for U'. After using some hyperbolic trigonometry to solve
for 1/(["- 1), the roots of this quadratic can be expressed as

dU (21U/HI) cosh (L/2H1)

d- = 1 a + (a2 + b)i (4.25)

a = sinh(L/I) cosh 2 H H1sinh2-1, (4.26)

2 sinh (li/HI) 1- cosh L- sinh L. (4.27)

Equation (4.25) gives two (±) intersecting families of curves in the (1 ", )-plane, and
the intrusive solutions of interest pass through the nose point, L = 0. The two families
are given in figure 10 for uniform potential vorticity H = 2, and comparison with the
zer-potential-vorticity curves (figure 11) shows that there is not much difference in
the vicinity of 1, = 0.

Corresponding values of L, 17 far upstream must correspond to one of the points
(say P) lying on the (lashed auxiliary curve in figures 10 and 11. Through this point
1. pass two (±) solution (4.25) curves, one of which represents a 'wedge' and the
other a 'bore' intrusion (Stern 1980). A wedge solution (D passing through P has a
local propagation speed that increases towards the nose, so that an observer moving
with the nose sees the wedge get thinner with time until frictional forces eventually
become dominant in the nose region and shw the nose down. Thus all the 'wedges'
have a divergent energy flux in the nose region. and these solutions are apparently
irrelevant for the model we seek. The E solution (curve PS). on the other hand,. (an
be shown (see Stern 1980) to have a local propagation speed that decreases with L.
an(l the nose ofthis bore-like intrusion advances slower than the rear. Thus an observer
sees the front steepen with time. whereupon the short-wave terms neglected in this

@2
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Fi(;,RI 1(1. The trajectorie sof'solutiots in (U. /,)-space for non-dimensional potential %orticit ' v 2.
rhe limiting bore solution corresponds to the line OW and the long-dashed line corresponds to (fhe
apstreamn condition (4.17). which any solution must lie on.
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lFiotVRE 11. The trajectories of the solutions in (I'. L)-spaee for zero potential vorticit.
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theory become important and the 'shock' modifies the nose. Although thes, solutions
might be relevant, we note that there is an entire family of bore solutions.
corresponding to all the P-type points, and further specification is necessary.

('onsider the nose region (L = 0) of the current, and replace the hyperbolic
functions in (4.25)-(4.27) by the leading terms in a small-L expansion. The result

,-.dil 217d-= 1 T (4.28)
,'.x dL L ~~~J+ I L 21, -i)I

is valid for small L and all H. This relation also holds for all L when H -1 -> 0. The
bore solutions are obtained by using the - sign.

Equation (4.28) is infinite at L = 0 if 17(0) is finite, so that the frontal slope

x L-o ax -o

will vanish if U(O) > 0. Under these 'unrealistic' conditions, a thin nose (L/x = 0)
i exists at all times at L = 0 and, furthermore, the shock which will occur for this

solution will be located behind the nose. The only exception occurs for the bore
* solution satisfying the end condition

11(0) = 0, (4e29)

for then (4.28) is finite at L = 0. aL/x can then be finite, and L/ x = o0 can occur
first at the nose. This (4.29) 'limiting bore' also has the property that its upstream

* -, width is maximal among all the intrusions that propagate as a bore.. Initial states with
a greater width have to adjust so that, a thinner portion propagates down the coast,
leaving the thicker portions behind. Further discussion of (4.29) appears in §6.

The maximum width of this limiting bore is found by integrating (4.25) with the
- sign:

d17 (21U/HI) cosh (L/21)
4dL =I- a-(a2+b)i (4.30)

and by using the boundary condition U(0) = 0. The resulting curve OW is extended
until it intersects the upstream state curve at point W (figure 10).

For zero potential vorticity. Stern (1980) found that the abscissa of the latter point
It' is (figure 11)

1 L=0"418 for x=-oo (4.31a)

For finite 11 (4.30) was integrated by a Rung(-Kutta scheme, and the result for
It = 2 is the curve OW in figure 10. The upstream state curve (4.17) is RQW, anti
the point of intersection 14' corresponds to L = 0"422. A number of values of I were
takeni in the range I < 11 < o and the computed L lies in the range

0"418 < L( - o0) < 0"426. (4.31 b)

Thus we conclude that the limiting bore width b "- 0"42 is essentially independent ,,!
potential vorticity.

The foregoing long-wave theory is obviously not uniformlv valid. and it will fail
when the first shock forms (at the nose). At that time it is reasonable to suppose that

* the short-wave theory ((4.1) and (4.2)) will modify the entir( nose region anti
accelerate the nose. But it is reasonable to assume that there will be no modification
upstream. This means that the value of L in the latter regions will equal the

O

S



256 M. E. Stern, J. A. Whitehead and B.-L. Hua

long-wave-theory result even though the nose is more drastically modified. This
assumption is testable in principle by integrating (4.1) and (4.2) numerically. The
non-limiting bores (U'(0) = oo), on the other hand, will break first behind the nose
and will probably evolve into a more complicated structure (e.g. separated flow).

5. Quasi-steady nose speed and detrainment coefficients
The limiting value of the nose speed (in the post-steepening phase mentioned above)

must be consistent with the upstream mass flow, and with the Bernoulli condition,
i.e. (3.6) and (3.7). The 4i(y), A(y) appearing in the latter are to be evaluated far
upstream, and, according to the main assumption at the end of §4.3 are given by the
long-wave theory.

The calculations are given first for zero potential vorticity, (H - 1 -* 0), in which
case (4.11), (4.12) and (4.17) reduce to

ii = U-L+y, h = 1(L-y)- J(L-y)2 , 1 = UL- JL 2  at x o .

and from these we get
L hudy h2(O)=j at x=-oo,

fo hdy = ULJ-L3= =L+L at x=-oo.

The wall velocity is then u(-o, 0) = I/L-L. Since L = 0"418 (4.31a), (3.6) and
(3.7) yield c = 1546, (5.1)

8 = 0.332. (5.2)

For finite potential vorticity, one has

(1 - H) cosh LIM + H a
HisinhL/HI at x=- , y=0, (5.3)

f0hudy = 1h2(0) = i at '=-x , (5.4)

hdy = H[L+ s- 2H (cosh LH - i)] at x=-oc. (5.5)

When H = 2. we have found that L = 0"42 (figure 10), and the values of t3 .6 ) and
(3.7) are then computed to be c = 157 and 8 = 0.32. For the whole range I < H < ),

the values of (c. 8) do not differ by more than 3 % from the above values. Thus we
conclude that the nose speed, detrainment coefficient and boundary-current width

4are essentially independent of the potential vorticity for a given volume transport
(i.e. ho).

We have also investigated (appendix C) theeffect of a finite bottom layer. and found

that this increases the range of widths of the boundary current to

0-413 < L(- 1) < 0"516,

and L( - oo) = 0'43 when the total depth is twice the upper layer depth (h0 ) and when
t = 2. Under these conditions C = 156 and 8 = 0"34. Thus we conclude that the
boundary current width, speed c. and detrainment coefficient are insensitive to the
lower-layer depth as well as to the upper-layer potential vorticity.

I'
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U.X.

Fi1.URE 12. Sketch of the evolution of a bore, as modelled by the present theory. At early
* noni-dimenlsional times Yt < 12) nio shock has formed and all characteristics flow toward the right.

The dlotted trajectory is the positioni of the nowe. At slightly hefore I,. a shock forms at the nose
if the solution is that of the limitinig bore. However, for the 'bore* class of solutions, iniformation

* from the shock (to"s not flow to the left, so trajectories of characteristics to the left of the bore
* are unaltered.

6. Critical remarks and conclusions
(I -lnaiall% consistent model of the evoltutioni of a coastal intrusion has been

developed, start'ing fromt an initial configurat ion in whiech the dlistance of' the front
Iron) the vvertical wafl varies slowly in) tit hew tiwst reall (I irvet itii. Ie uniiquteness (if'

(it)celedso an assu mpt ion. the physical sigificaince of which may lie argmc I
in a slightly (different way front that uisedl in the text.

Suppose that at some'initial time we have a front that varies slowly in P~ fromn
=- x to the nose' point 1,~ We set-k self-sim-ilar solutions (4(1,I(L).) (I)

oft he long-wave eqtuat ions, subject to certain sidle conditions. whch will evolve intoc
the liniitingohse rvahle state. The local propagation velocities are required to decease
towards the nose, for otherwise the initial state will develop into a thinning wedge
and the lolution will be greatly nio(lifledl by frict io n. 'Ihel( P1'r)lx5 solttion mnust

therefore tend to develoip a shock,. which, according to the long-wave t heotry. formis
first at somne point (/,.) in the phase plane (figure 12). The earl * -stage' (long-wave)
equnat ions ohvic tslv'X ease to be tuniformnly valid at this poi~nt. alanti te more exact

* ~~equtitjois (4.1I ) and (4.2) miust be used to ('ont inute the solttion into the in teritiecliate
stage. The next stipulation for our, pait ieular solution is that there he no u pst rca n
intluecnce'. in the following sense. Let x,(1) be that straight line which ext ralpolates
the nose position as comnptuted from t he early-st age equtrtions5. We t hen reqtuire that
the solution at all (x'. I)-points to the left (-xI)< 0) of this line remiain at the values
gfiven by the early-st age equation.- Implicit here is the (theoretically) test able

*assumipl tin that thle earl 'y andI intermediate stage (-an be joined in the v icinlit v oft he
line( .-'n(0 stuch that the shock foims first at the nose. ( therwisc. the earl I -stage
soluct io n will pnot be unifbOrmlk- valid for all x' < *r0(t). and stich anl 'interior'. shock

('Vt)< rMs)J) will not evolve its sitnplv ats the solttion beving prioposed. As mentione'd



258 M. E. Stern, J. A. Whitehead and R.-h. Ilius

following (4.28). a shocko at t he nose imo p4les that 11 /dIh InIlist he finlite at h, = ( and

t his bi41lar. V 4'Ioliti ion1 4'l4454' I he4 I it'Iy xl agd. pro411.1cm. Al I Ii l.ligI ll- spo 41r~)m 1 Ii ing
114454 MNlve is zeo) '/ lis will IN- greait Iy *1 v 11Iiel fly) tit(- latt -fstnage. Thli ipsi reali widlthi
h, onl the other limid. will not be' ltA're(I. and We hIave Shown 4W114W the lat('r-StagV nose
velocity (.all IlIe compu11 1ted by anv all aat at ion ofl II('njaili inl's th1eo 41Y. The4 nat heint jeal
existenice (If such it simple soIlution~ has. oft courIse'. Iot bleen proven.

The qulestio of,1 (II hetheri this 'limiitiing Iho' cuffIli r1'ieailized (loll'-114 t depend'tl
('nt ic'alv Ui(4pol geoiI(t rival A in ilitude b~et weet'i Ifhe in ia/i st a1 t e oft t If(- ex ls'imtIiit and
the trheo;ry. 1he initial -value problem posed by the ex perimnentalI set - i1 is t heoret icallIY
intractable (in our opinion), and only the later stages of the( evolution req1uires
rationalization. We have shown that the width 1L of the bore that finally emerges in
the dam -break experiment (0-42+±0-06) is in acceptable agreement with lt he theoretical
model. The same is true for the nose speed (5.1). and the detrainment coIeffiient (5.2)
is also accounted for qualitatively. (The numbers are insenlsitive' to1 the potential
vorticity, and rather insensitive to a secondI layer (Iffinite dlepth (see applend~ix C).)
We therefore c'oncludle that, the limiting bore is approximalyIN realized in the( complex
adljustment prcs that occurs at the coastal stagnation point after the (lain is

broken, and when a constant- velocity boundary current is found. We have no
explanation as to why this should occur.

Other types of coastal intrusions (i.e. solutions) ('an perhaps be realized by diffe'rent
experimental set-ups. Experiments in basins larger than ours would be desirable to
test the Reynolds-number dlependencee suggested by figure 8. Such experiments nmay
show that the downstream distance 1~ is an important dlimension. as is the case inl

the downstream spread of a non-rotating turbulent jet. A statistically steady
source-sink experiment in a rotating frame would be dlesirable to resolve the 'large'-
scale eddies that we see, and the averaged profiles should eliminate the subjective
element that enters into our determination of'the widlth of' the boundary vcurrent.

The general aspec'ts (of dlensity ('urrentsm disc'ussedl hereini maY Ise oveanivallv
relevant, even though coasts are not, vertical (the topographical effect,,s must be taken
into account (Stern 1984). p. 701)). We have in mind the formation (If surface bor'es
during spring runoff. andl the formation of abyssal bores (during the intermittent flow
over the sills (e.g. D~enmark Straits. Anagada-Jungfe-rn P~assage, Gibraltar Straits)
that separate basins with different water masses. It would be unnecessarily restrictive
to regard the bore as merely a starting (transient) phenomenon. It may occ'ur at an%'
boundary where there are strong longshore density gradients. ev'en when these are
intermittent features (of a stationary process. The longshore fronts max' form andl
dissipate (rather quic'kly). with the whfole process being anl important part of the mean
boundary ('urrent. Such is the impression we get from the experiments, wherein th(e
fluid detrained at the nose as well as the frontal instabilities give rose' to a larger-scale
mean baroclinic boundary c'urrent.

A substantial portion (of the work was completed while the authors were in
attendlance at the Summer Study Program in GeophYsical Fluid D)~namics at the
W~oods Hole Ocealcographic Institution. The program is supported by the Office of
Naval Research under contract N00014-79-C1171. Some (of tlhe latest experiments
were c'onduc'tedl with support of the Office of Naval Rese'arch c'ontrac't
N00M1481-(C-0010. The authors are grateful for the skilled laborator 'y assistanc'e of
Robert Frazel and want to thank Nathan Paldor for his analYsis of the djata. This
paper is W~oodls Hole Oceanographic Institution Contribution no. 4824.
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Appendix A. A general constraint on the width
Following the remark made at the etdo §3. we now examine the oiu equenees

of assuming invariance of | +f +g. (3.2) on tihe free-surfaec dividing st reallinte.
At one end = -o, we have V2 = (4d_ )2 where ad is the f-frame velocity on the
dividing streamline far upstream from the nose. and .^d is the corresponding free-surface

-- height. The datum surface for measuring the latter quantity is the parabolic level
surface that passes through the undisturbed free surface at 1 = + oo. The dividing

* streamline under consideration must also pass through the nose stagnation point at
which VC = 0. ? = 0, and the height is i = S. By equating the Bernoulli functions
at the two ends of the dividing streamline we get

Using (3.3) to eliminate is yields

Now zd is a positive number (proportional to A if the lower layer is relatively deep),
and therefore the above equation gives the important inequality fe Yd < j2, which
becomes

ffd 2 2ddf

when (3. 1) is used; it being understood( that the integrals are evaluated at 1 = 00.wsdheThe terms that have been consistently discarded in the formation of this inequality

from the preceding equations are believed to be larger than the terms (unsteadiness
and friction) neglected in the primitive equations, and therefore we have high
confidence in the upper bound for d. This involves no far-reaching assumptions, such
as have been made in the text to obtain an explicit equation for the width of the
intrusion.

Since the right-hand side of the inequality is certainly less than half the maximum
f(y). we conclude that the upstream Rossby number based on maximum i and Yd
must, be greater than two, for a quasi-laminar bore to propagate along a coast. Initial
distributions of density having widths larger than that permitted by the above
inequality must therefore suffer a profound readjustment (such as bifurcation) before
the density current can propagate.

If the ]ower ]ayer is very deep, so that the corresponding current in the rotating
frame is zero then ft = - (Ap/p) (g/f) il/fl . Upon substituting this and noting the
geometrical inequality

f y6id > 40 - d) d#.

where ho is the upstream wall height. we get
(g*A0)t

-- g*2' -g gAp/p.f1 .d < f! v * 2 "I

This states that the laminar bore width d (which we interpret to be the L measured
in our exlperiments) must be less than 0.717 times the Rossby radius of deformation.

4f

6

_________
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Appendix B. Some additional features of the evolution of the solutions
Although this paper is primarily concerned with the leading edge of the intrusion.

the nature of the waves that can propaie;tte on the trailing front are also of* interest.
This subjct has been studliedI by Stern (1980), for the case of zero potential vorticit..
and the modifications required by a finite potential vorticity are given below.

The discussion is basedl onl the properties of the similarity solutions (4.25)-(4.27).
which will be summarized here. Typical solutions of the two Riemann-invariant
families (±) of (4.25)-(4.27) are given in figure 10 for a non-dimensional potential
vorticity HI = 2. along with other auxiliary curves. A comparison with the zero-
p)otential-vorticity c'ase in figure I I yields no qualitative diiffe'rences.

A curve such as PS5 in bo0th figures corresponds to propagating bores its defined
by Stern in which the upstream velocities are larger than the njose speed and in Which
the energy flux converges to)wardIs the nose. The wedge solutions suct ats curve S11
have the opposite behaviour, that is the thickness of the nose decreases with time.

The functional relation between L(.r, 1), 17(x, t) and h(.r. o, 1) is indepeondent of time
relative to an observer moving with the local propagation speed given by (4.24). andq which for finite potential vorticity is given by

dx HI [ HI I (B Isa)
dt ~c+dl B a

C = I + eosh,

d =2sinh. (sinh3 -2, w-, cosh 3 2L 2cosh 2--J

vjjosh L - sinh b1

F~or H -o X one regains the zero- potent ial -vortivi ty case

dX U- 1
Tt = I+ (L/2 U-L)i (1 bh)

Other curves in figure,, 10 and I I that himit the regions of physical meaning are
also dIrawn in the phase space ((U, L) and arc listed below.

[ he possible values of the upstream state of the current are given by the curve
PQR. which is obtained by setting h( - oc, o, t) = I in (4.11), and thus we have

I+ +Hcosh- I)
SHI (B (12)

ilsinhj1L

when I/ - x, this redu~ces to Stern's result~s

U L.

Solution,, of p)hysical meaning must lie above the c-urve Oi. which correspondIs to
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the sect ions of, the b~oundlary current where the d1epth at the wall goes to zero. aund
w-ih is obtained by setting h(.r. o, 1) = 0 in (4.11I):

I-= Ili (tanh - ). (B 3)

rlhe limit for zero potenltial vorticitY Yiehis

Curve OR is the locus of sections where the flow at the wall reverses, and is found
by setting u(.. o, 1) =0 in (4.12):

rhe limit for ii -- oo viels r' = I,.
Many '%of the -onc-lusiois fithe ze ro potential vorticity are not c-hanged for non-zero

conlstant potential volt icit Y. as the illaustrat ion below fiur the quasi-geost roplhic wave'
sh ows.

Let its consider a boundarY geost rophic current withI a f'ront that lies p~arallel to
the coast in the interval - oc < xr < + xo. If the current is unidirectional, then the
largest possible Nvidth will correspondl to the point It in figure 10, i.e. to the value

LR = Ili arg cosh If (B35)

h Iich ik fo undl Im inter'sectinig the upstream-state curve (it 2) with the locus of
sec-tions where the flow reverses at the wall (B 4). If this basic state is perturbed by
a wavelike motion correslpondling to a similarity solution such as the ( + ) Riemann
invariant passing through R,. then the local p)ropagation sped (B Ia) will have
opposite' signs for sect ionis of the boundary current lying on each side of curve OR.
ix, lbOr at width 1, > or < 1LR. If' L > LR. th~en the local propagation speed (13 1 a) will
be nlegative Since [(,) (h) lies below the curve OR and will increase in magnitude
its L. - LI? increases. Therefore, the front will steepen on the upstream side of the wave
and the( amplitude dispersion dlependling on the boundary-current width will lead to
a ba ckwa rds- brea king wave. Moreover, one can verify from the expression of the
transverse vclooitY dL/di along the st reamuline.

anl 1)y cvaluat ing Cu/C'x fromi (4.11)

- l [~fsinhI 1Y' U coshLY]C

that r 't jC'h1/Cxj _j at point R? (since nt 0 t) anl the wavelike mnotioun is quasi -
g.'oost r phic for both longitudinal and transverse vclovit ies. Thus the dliscuissioni abhove
isi n lelxildent ofthe finite value of constatit potential vort icity .andlthe generalization
of, 'th lo ther wavyes and blo king waves' as discussed bY Sterni (1 980) is also
straightfoarward.
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Appendix C. The effect of the finite bottom-layer depth
Althou ngh t he ti kness of the- heavy flui (1iII our experimients was an order of

ninagnitude larger I han t he thickness of the intrusion, there will be some vertical
CubMjbleS~iifl of the heaVy fluid columns as the bore piasses oPver thenm, and it is of'
interest to) investigate the fie-lhack. F~or this purlioe the rigid b)ottoml of* the taink
is assuiiedl to lbe at level surface so that the fluid in adIvanei oIf* the nose liis unifourmn
Ihiekiwss and it uniform itent ial vortieity. The nn -diiensin al VA114 lia( uit' e tt ter
is denoted 1)by 1 ///. whereas 1/11, lnow (denotes the itential vort icit 'v ol'the uppier
lit- er: both of these being based on h.as the unit of' height,. If* 1'(x. y. 0 dlenotes the
pressure on the uppier z = 0 surface. andI R,(.r y, 1) the pressure- oin the bottolm surfae,
then the generalization of (4.7) and (4.8) to the two-layer ease is

iti~ - 1110 V = - (Pi+ Ui)X. (c I)
a121 - (Ia2y) 1'2 - 1P2+ P42)Y.

U1 (POY. 'U2  -(IP 2)y* (C 2)

The hydrostatic relation connects the upper-layer thickness h with the pressure
gradients:

VP1 -VP 2 =Vh, (C 3)

andl thus the elimination of p, and P2 in (C 1) and (C 2) gives

(U -1 1u2 )t -I10 -U1 y) t'1 -(1u2 ) 2 1 =(h + Jul-u.2), (C 4)

(Ul-U 2 ) = -/. (C 5

The continuity relations for the two layers are

=i 0+ (('6)+(h,
-,+(H.-h)U 2 1.+(H 2 -h)v 2 y = 0, (('7)

andl the potential-vorticity equations are

h l' (('8)

1-U2 Y = 1
H2-h H2 ' (9

rhe top layer extends from y = 0 to y = L(x, 1), where h = (0, whereas the bottom
laver extends from y = 0 to y = oo with a non-analytic behaviour at y = 14x. 1). The
circulation theorem precludes a vortex sheet in the heavy fluid, and thuS U2 Must be
continuous oin either side of the front. Moreover (C 9) imlies U2y = 0 for all y >, L.
andl therefore = a ty=Lx )

for otherwise u2 would b(' infinite at y = o
'Fhe solutions of (C 5), (C 8) and (C 9) that satisfy the y = L boundary conditions

(( 1) reh(x.!/.t) = -(I'(1511 L Y)+H' I'sinh "Y((c 11)



Density current along the coaIst of a rotatingJ fluid 263

,(.r. y. 1) = ( :- h+1') + (- i,h + I, co (C 12)
.IIII ( ,- I-t

112(.,.. I = () (y- V,± )- - l , silh + 1, osh 1.1- 1:1)

where
H 112

III + 112

now denotes an 'equivalent depth', and UT = u,(.r, L, t) as previously.
To obtain the long-wave equations for (7, L) we will evaluate (C 4) on y = L where

U,/ y = I u2/,y = u2 = 0, and therefore

l(, - u)ly_+L (h-+ 2- 1.,,I,l Iy-L = . (C 14)

We will also use the integrated version of (C 6) and (C 7). or

htdy+ (hu) 1 dy = 0,

tcr (.r ((1)
Sr-hd/+ + ((l0..-h),,),dy+ ll.,12lui, =.

Eliminating between (( 14) and (C 15) gives the fillowing system

2 1 T L12 0l((,-u.2 )t -,+t(h+P4,)r,-L+-.0 .k, dy

-f MxjI ) ,2xd,,+jL ( - . (hu2).dy = (c. ( ; 6)

f I(X~t) L(x.t)

CJ.0 hdy+,Jo hudy=. ((' 17)

When the profiles of u,(.r, y, t), h(x, y, t) and u,(x, y. t) given by (C 11 )-(( ' 13) are
used to evaluate the above terms, and when the result is simplified, we get

sinh

+ {(, sh -L- I)( U cosh L-sinh L)[, + H (coshj - ,

+ {q sinh co(~sh +~ 1)( ;cosh j~sin1J )( Leslj )
ff" V fI, mlP"'' (I , P

+ +{ ' /IIn h 1"  coshL. (0. (c1)

(I h " L U 11 - /I A

III1 F 2 II sinh l L ' - jIi -"'i = (. (C' 19)+ (-l i.1.~n -- in Sin (.os l
5 ,1l ul W l/

2

0

Sih(c 1)
/i ih ihcs
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One can verify that for 1/111, -- 0, i.e. in the case of a boundary current overlying

an infinitely deep second layer, (C 18) and (C 19) are identical with the system found
in §4. (4.15) and (4.13) respectively. Terms multiplying 1/112 , i.e. due to the coupling
of the bore with a second layer of finite depth, give an extra contribution of order
12/11 for small h/Hi.

The similarity solutions satisfying the functional relation (4.20) obey the ordinary
differential equation

2- cohL [l sinh L-- U cosh Lq[ sin h L-[

dl" 2- cosh 2111[ H-

d- = a+ (az+b)l ((' 20)

11 . L H L ] 1 L L\1
a sinhj- [cosh_ -1  sinh i- ' 2 -sinh2 co --- sinh--)l

((' 21a)

b =,2sinh. l-[coshYL--sinhH-)

+ cosh-- I +sinh-j- cosh -- j-s h -)]

sinh ( cosh I)(- U cosh -- sinh -} (C 21

When putting 1/1112 = 0 in (C 20) and (C 21), we recover the system found for an
infinitely deep second layer, (4.25) and (4.26). Again the leading terms in an expansion
in L/Ill in (C 20) near L = 0 are identical with those previously found for the
zero-potential-vorticity case. Therefore the discussion concerning the nose boundary
condition still applies, i.e. we need 17(0) = 0.

The upstream width of this simple bore will be found by integrating (C 20) using
(4.29). and by finding the intersection widi the upstream-state curve

I+/ ilcomh/-I I

IisinhLC

obtained by setting h(- o, 0, 1) = 1 in (C I 1).
Table 3 gives L(- o) as a function of the initial equivalent depth H and the ratio

H/H2 . However, for a given H, not all values of 11/112 arc allowed, since H2 > I and
H, > 1. The entire range of L(- o) in table 3 is

.01S < L(- oc) < 0516. (C 23)

and thus the coupling with a second layer may increase the width (,f the ,oun(larv
current up to 25 0'. The largest values of L( - c) are found for small 11 (05 < 1l < 1).
i.e. for values of both 11, and H2 close to 1. The maximum of L(- 7 ) is reached for
H = 0"5 (H = I an H2= 1).

However, interesting values of H, and H2 would he closer to 2 (remember that the
upstream height has been chosen for normalizing the heights) and in this range the
width of the boundary current remains within 10' ofthe value found for the 'i.* v
simplest case of one layer with zero potential vorti'ity. The new profiles of cuircul
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ii /l1 O- I-3 1.5 0-7 09
I'glI

0"75 - 0-45 1-470 (0496 -
I 0-431 0-442 0-454 0-469 0-488
2 0-425 0-429 0"435 0-440 0-446
0 "420 0-421 0-422 0422 0-423

TAniUr 3, Values of upstream width L(- o0) as a function of initial equivalent depth H and of
ratio H/H

given Iby (C II)-(C 13) have also been used to evaluate the nose speed c and the
detrainment coefficient 8. For the upstream wall veloeity we have

(l 1 -t) cosh A + !t

HI - L at x=-oo, y=O. (C24)
H, III ( ) Hsinh -- 1

where " -is defined by the upstream condition ((' 22). The other quantities Jh dy and
fh"n dy needed foi (8. c) have the same formal expression as (".5) anti (5.4) respectively.
but in this ease H is the initial equivalent depth. Choosing IJ = 1, = 2 and
L( - o) = 0-43 yields for c and 8

c = 1-56, (C 25)

8 = 0-34. (C 26)

Again we conclude that the bore speed seems to be independent of the structure of
the (urrent.
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ABSTRACT

Large amplitude disturbances in a boundary layer shear flow are

ccnsidered in an inviscid and longwave theory. Initially weak horizontal

convergences are concentrated and amplified in time, thereby increasing

thc maximum nor.al velocity (V ) until it becomes comparable with the

horizontal velocity. The effect is first demonstrated in a two dimensional

modil having piecewise uniform, vorticity. The leading edge of the compact

disturbance propagates downstream more rapidly than the trailing edge, but

no "quiet" zone appears in the center. Instead V-P and a tendency for

wavebreaking occurs. The evolving large V pattern is consistent with
1

observations of the laminar spike just prior to its breakdown. The

longwave theory is generalized to three dimensional motions, and the

effect of an initial spanwise divergence is such as to rationalize the

initial vorticity assumed in the two dimensional model.

I,
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I. INTRODUCTION

Because of its laminar-like initial behavior the "spike" in the

experiment of Kovasznay, Komoda, and Vasudeva is perhaps the simplest

K:. member of the "spot" family which have been the subject of many recent

investigations of the transition to turbulence. 2'3,4 When a small amplitude-

and spanwise modulated Tollmien-Schlichung wave is generated by means

of an oscillating ribbon in the boundary layer, the wave amplifies downstream

and the spanwise vortex stretching produces the anomalously high vorticity

region shown in Fig. la. The spanwise variation of this vorticity at a

later stage of development of the disturbance is shown in Fig. lb. Notice

that the normal velocity field is weak and broad in Fig. ic, which corresponds

to the same stage as Fig. la. But this field concentrates and greatly

increases in magnitude in Fig. Id, which corresponds to a later stage of

development than either Fig. la or Fig. lb. The vorticity isopleths (nof

shoun) corresponding to Fig. Id show that the maximum value increases

only by a factor of two, whereas the normal velocity increases sevenfold

from Fig. ic to Fig. Id. Moreover, the lateral scale of the vortex

stretching effect is much larger than the scale of the intense updraft

(Fig. id), and therefore it is hard to see how the latter effect can be

explained solely on the basis of the former effect. We shall therefore inves-

tigate first the ability of a two dimensional (vorticity conserving) model, based

on an initial state resembling Fig. la, to explain the large normal velocities

at the later time (Fig. id). The two dimensional approximation has also

been used 5', in a restricted sense to analyze the motion on the axis of

symmetry of a spot. Some of our restrictions will be removed by the

generalization to three dimensions in Sec. VI.

The simplcst idealization of Fig. I is a model (Fig. 2) which contains

three piecewise uniform layers. The lower region corresponds to the disturbed



boundary layer, the middle region is a compact "inclusion" representing

the vorticity anomaly, and the upper layer is the disturbed free stream.

The question of the origin of this anomaly is, as previously mentioned.

beyond the scope of a two dimensional theory, and we address the question

of how the anomaly evolves in time. Since the cross-stream velocities in

Fig. Ic are relatively weak and broad (compared to the boundary layer

thickness and the horizontal velocities therein), it is reasonable to start

with a long wave approximation, and to see if solutions evolving from the

initial state resemble Fig. 1d. If so, then the theory will have to be

modified at this stage, because the normal velocities in Fig. d are no

longer "small" and slowly varying.

Fig. 2 shows the model with the undisturbed horizontal velocity profile

appearing on the left. In non-dimensional units the undisturbed vorticity

of the lower layer is unity, the undisturbed velocity of the upper layer is

unity, the undisturbed lower layer thickness is L |  , and the upper

boundary is at jf Between the two uniform vorticity layers of the

undisturbed state a compact "inclusion" 
having a uniform vorticity --r-/

is introduced in the initial state. The inclusion is bounded below by the

vcorticitv discontinuity surface L CXt) , and bounded above by another

discontinuity surface at s Lab, 0)

The piecewise uniform vorticlty of the initial state of the two

dimensional flow must, according to the conservation of vorticity, be

piecewise uniform and constant at all time. The initial variations in

L - I are large 0( ) in amplitude but slowly varying in the downstream

direction, i.e. the characteristic downstream scale is larger than the

cross-stream scales b% a factor 6 -AP Therefore the dominant

contribution to tht vorticity is ,where is theX
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component of velocity, and it follows that U is piecewise

uniform. Therefore i is piecewise linear in , &./K is

independent of , and the normal (or vertical) velocity r e )

must be a piecewise linear function of which vanishes at the lower

boundary . These qualitative features hold for all nondimensional

times t for which the computed magnitude of V is compatible with the

long wave assumption, and these features allow us (Sec. II) to separate

they coordinate from the equations of motion. The derivation of the

long wave equations for L mt) is straightforward when 0 ()

whereas the experimentally 1,2,3,4 relevant case of infinite (treated

in Sec. III) requires more intricate treatment. Moreover, an exact

similarity solution can be found for the finite H case, the results of

which will support some general inferences drawn from numerical solutions

and qualitative considerations of the equations.

We will show that the leading edge of a large amplitude vorticity

inclusion propagates with the free stream velocity, and although the

trailing edge propagates with a lesser velocity no "quiet" zone appears

in the middle of the compact disturbance. Instead, the normal component

of velocity increases and a "shock" discontinuity forms in the middle of

'6 the disturbance - according to the solution of the hyperbolic equations.

This behavior ( IvIl ) contrasts with (or perhaps complements)

Landahlsl solution for an infinitesimal three dimensional perturbation,

* in which IVI decreases with t although the total perturbation energy

of Lh' spreading wave packet increases. Our result (Fig. 3) provides a

qualitative explanation for the large normal velocities in Fig. ld.

0



Our long wave approximation seems to be justified for the early

stage (cf. Fig. la) but it obviously must be modified when the solution

nears the "shock" stage (defined as the discontinuity point of the

hyperbolic long wave equations). The neglected short wave terms will

probably tend to disperse the shock, but it is plausible that nonlinear

"wave steepening" (large lateral gradients of vorticity and large normal

velocities) will predominate for sufficiently large amplitudes (i.e.

L -I = 06() ). "Wave breaking" (folding of the vorticity isopleths)

may also occur, and the investigation of these strong nonlinear effects

within the framework of a piecewise uniform vorticity model seems feasible.

We shall return to these motivating remarks in Sec. VI.

II. LONG WAVE EQUATIONS

As previously mentioned, the free stream velocity is the scale for

the horizontal velocity t , the scale for the coordinate is the

undisturbed boundary layer thickness; is the relative vorticity

of the inclusion. The scale for the nondimensional downstream coordinate

is the initial width of the inclusion, which is larger than the boundary

layer thickness by a factor - I and the scale for nondimensional

time 1 is the dnwnstream width divided by the downstream velocitv.

The scdle for the nondimensional vertical velocity V( is taken

to be times the &(-scale, so that neither the nondimensional continuity

equation

L"



*nor the nondimensional kinematic boundary condition

contains the parameter.

The vorticity in each of the three layers is then given

* (respecti.vely) by

(3a)

(3b)

We now let "POwithall1 other quantities (most notably Hkept

* con& ant at 0(l), and a separate derivation will be given (Sec. III) for the

*interesting case =.c . Therefore the long wave limit of 3a is

41' (4)

and A. must be a piecewise linear function of .From (1) it then

(5)

or 4 A /dt' (and the horizontal pressure gradient) is independent of

-iaboi Mg 90LouTaft" ) We shall therefore set
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V. the value of at the top of each layer equal to the value at the

bottom.

. If the initial values of the velocity are continuous across each

discontinuity surface, then the circulation theorem requires A to be

continuous at all t Let E [lX X denote the horizontal velocity

at LL, t) , and let L4) t) denote the horizontal velocity at the

upper discontinuity surface of the inclusion: then the local thickness of the

middle layer is

~(6)

It is readily proved* that the value of diLkdt 7.hL/dt H' '-

at - is the same as the acceleration

Td (7a)

of a material parcel on the lower discontinuity surface; and also

*Let a layer of vorticity be bounded by a discontinuity surface at

- ,)The linear velocity in this layer may be written

as Lk L, )-t:(-j) t" , and since V -7, C) 17 IW lt

4 we have

"I

SThe :e. -s containing 4P are se -,i to cancel, and the result proves (7a).
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(7b)

equals dlf at the upper discontinuity surface. Eq. (5) then implies

that (7a) equals the value of the acceleration at V=4 , where the horizontal

velocity is tL" 1 , and thus we have

L I-e(8a)

or

L+ L VL, ~L V1//.)

(Sb)

Likewise the acceleration (7b) at the top of the middle layer must equal the

acceleration (7a) at the bottom of that layer, or

ox e (9)

Instead of writing a differential equation for the third layer, it is

much simpler to use the vertically i-.tcgrated contin ity equation. Thus, a third

equation connecting L, t L is obtained by equating the transport / d

at - )) or H - 0/i /a- ,o the transport

at any x viz.



When this is set equal to f-//fL the result simplifies top

1.11

!]i or

, (10)

! where

(i2)

-D

" is t~he velocity difference across the inclusion. When these are used to

' eliminate "--r in (8)-(9) we get the longwave equations of motion

SSince L) 1 and )( ,, 0, the horizontal integrals c-.

[ (12)- (!3) yield
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which merely express the conservation of volume f or the inclusion (local

thickness of -jJ ) and for the lower layer. A more interesting momentum

integral £o

-Ai - (15)

for the lower layer can be derived by using 'I )- (8a), (8b),

and (9). Eq. (15) states that the total momentum of the lower layer can only

change if there is a horizontal pressure gradient ( ) in the upper layer.

We confine attention to disturbances with positive vorticity Cp >

(changing the sign yields profiles with jet-like structures), and since the

layer thickness (6) must be positive, it follds that (11) must be negative,

or

III. DEEP UPPER LAYER

The foregoing asymptotic expansion is still valid when I H ->_ E.

in which case (12), (13), (10) and (11) simplify to

10
to'

K 1b

' L



or, equivalently

L (17a)

T. -- (17b)

Although the foregoing derivation is not valid for the most interesting case

because the vertical scale of the irrotational motion in

the upper layer becomes the same as the horizontal scale, we shall give a new

derivation at the end of this section which shows that (17a,b,c) are still

valid, but to 066 rather than w(62) when -- >

The well known solution of (17a)

L(Io tU (17d)

states that each value of 14 (and also ) in the initial state is

propagated with constant speed. Two different shock waves will therefore form
at the two points where and L first become double valued.

The behavior of the two interfaces can be computed from

L -3 (18a)

L L--(18b)

and the vertical velocities can be computed from

(19a)
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Pr 
(19b)

Suppose that the initial values of consist of either an elevation

- or a depression wave, i.e. they each have a single maximum or minimum in

- -- e X < - The only other feature of the idtial distribution

which will be assumed is that g / , i.e. the inclusion is a positive

vorticity anomaly. Now if Eit o) contains a maximum, then the solution

" of (17b) yields a shock 2-O located downstream of the

- maximum , and if IX 4) contains a miniaum, the shock will occur

-~ upstream of minimum - , so that we again have }Ug/ -" -'o

Likewise for the sense of the shock. Since

the "fast" U shock will occur p-4-.-.a d further downstream than the

"slow" L.1  shock, unless the amplitude of the former is small compared to

,- the latter.

When the fast shock develops at a point (Mt) , eq. (19a) is finite,

but eq. (19b) is -- since </ . Therefore strong downdrafts &-x- -

* develop in the intrusion, and also above (in the lower part of the irrotational

region). Behind this . d -ann,. .lat e the slow shock develops at a point

V where nx is finite and .- Therefore

.- (19a) and (19b) are + 0 , and large updrafts occur in the lower q L )

layer as well as in the two other layers. _0Mr o^h -hs.:: .- r

field of strong vertical velocities, indicated schematically in Fig. 3, (see

Sec. V for a more detailed calculation), is in qualitative agreement with Fig. 13

of Kovasznav et alI •

I.
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We now reconsider, for previously mentioned reasons, the validity of the

long wave equations when , and this derivation will also indicate

the first order effect of the short waves when the shock stage is entered.

Eqs. (8)-(9) are valid prior to this time because the lower and middle layers

are thin, whereas the upper layer is not, and it is therefore required to

derive the equation of motion for this region whose lower boundary is

Since the vertical/horizontal scales herein will be comparable, and since the

vertical/horizontal perturbation velocities will also be comparable, we first

transform (U, ) by

). ,

to the new parameters . )41 , while leaving the other variables x .-

unaltered. This returns us to the familiar (zero) vorticity equation

- 0 and the continuity equation 3d,1 # ,K vI ,

or 71 V O in the upper layer. The small E simplification

4 enters in the lower , ) boundary condition, wheftthe vertical velocity

is

With this and rix o0, t)- Laplace's equation for V can be solved,

and from this at at 3, ELL can be computed. The result expressed in

6 fterms cf the Cauchy. Principle Part of an integral is
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-l 4L

Since 1+6u, it follows from (9) that

~~~T ±4CV (~'~f[($~)~Qxz (20)

" correct to 02) . To the same order of accuracy, we may replace the

term on the right hand side of (20) by -UL ) /V,4. c , and the w e

term by (8b). Two simultaneous equations for Z;, L , first order

in time, are thereby obtained in which the new O term in (20) contains

the highest x-derivates. These will give the leading dispersive effects,

whereas the corresponding terms from the lower layers are , and

will only become significant at later times than do the O60 terms.

A discussion of these interesting dispersive effects is beyond the scope of

this paper, and it suffices to note that (17a,b) are All asymptotically

" valid when ->0 ,H z •

4l.
The reader may prefer, at this point, to pass directly to Sec. VI,

which can be read independently of Secs. IV & V.

I

IQ

r-
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IV. A SMIILARITY SOLUTION

We shall see that Eqs. (12) - (13) are hyperbolic over most

of the regime of interest. But the propagation characteristics

are notably different from that which occurs in passive wave systems,

e.g. in the nonlinear evolution of a "bump" of water on the free

surface of a shallow layer of resting water. In the latter case

the surface elevation separates into the two modes of propagation

associated with the two characteristics. A single isolated disturbance

thereby separates into two oppositely propagating modes leaving a

"quiet" intervening zone in between. But the disturbances in a shear

flow are not passive, and we shall show that the variation in propagation

speed of large amplitude long waves is such that there is a tendency

for the two "modes" (Riemann invariants) to "lock" (rather than to

separate) in the center of an isolated disturbance. The width of this

coherent feature tends to increase linearly with time, at least until

a "shock" (rather than a quiet zone) forms in the center. This interesting

property will be exhibited by an exact similarity solution of Eqs. (12) -

(13), and a similar behavior seems to occur in numerical solutions

[Sec. V] under conditions less severe than those that will be required

for the similarity solution.

Before turning to this problem, it is instructive to note some

formal properties of Eqs. (12) - (13). When L- and 2 are

sufficiently small, the linearization of those equations gives
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- (21b)

These have the general solution

:i~~~~~i~ -D<, )=-o -e)
(22a)

z, - xtI
(22b)

where 10 c) L(9) are the izitial conditions. Therefore when the

perturbations are infinitesimal,D propagates with unit speed, whereas L-1

propagates with the slower speed , so that L is a combination

of the two normal modes.

Consider next the simplest nonlinear solution which occurs when L -/

is finite but , so that (13) reduces to

(:3)

where

(24a)

is the local propagation speed, having the properties
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b ,H

(24b)

(25)

Eq. (24b) indicates that this finite amplitude disturbance corresponds to the

"slow" infinitesimal wave solution of (21a,b). But for finite L-/ , the

local propagation speed (24a) will increase downstream if

Y- "" -  (2 6 )

If the other mode is also present (D o) ,one may anticipate

that when (26) is sufficiently large, the local propagation speed of the "slow

wave" may actually exceed the speed of the fast wave (equal to unity according

to the foregoing linear theory), so that the latter may not be able to

separate".

To verify this remark, we look for similarity solutions of (12)-(13) such

that D t4 r) is a function of L Cx, z, independent of , i.e.

4

These functions )6J will be shown to consist of two families of :urves,

branches of which will be properly pieced together to construct a well b~hzved

4I
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solution. The more general significance of these functions (Riemann

invariants) in the theory of characteristics appears in Sec. V, when we

address the general initial value problem, and show that the locking tendency

occurs under far less severe conditions than will be required for

the following similarity solution.

Substitution of (27) in (12)-(13) gives two simultaneous linear

equations for 0 ~ /

'I,-L(28)

27 DOI (29)

whose determinant must vanish, and therefore

ILP-D (30a)

' [L 0 a2_. ,°

"* The two roots of this quadratic equation, or

,,,(J _ (30b), a" ;= ~ ~~L (H } - Di

are differential equations for two curves ' (L) passing through each point in

the hodograph plane. For each such curve the corresponding L /D values in

physical space will be conserved for a point which moves with the local

propagation speed / equal to the coefficient in (29), i.e.
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-LH.jH(31)
[L D

- . The term inside the radical of (30b) must be positive, of course, and the

more general significance [Sec. V] of this is that it defines the hyperbolic

domain of (12), (13), whereas negative values are in the elliptic domain.

The boundary of the two domains inAhodograph plane is therefore given by1A

L -(32)

and the elliptic side is beyond the scope of the theory [because there will

be perturbations which increase exponentially with time and the smallest waves

will grow the fastest].

Consider first the case -Q) in which the intrusion degenerates into

a vortex sheet* at L(x, r) and the solution of (32) then simplifies to

(33)

; L I L ) >c
(3-)

As previously mentioned, attention will be restricted to velocity profiles

•We have verified the va!idi.- of (12)-(13) when :71; by means of a

separate long wave expansion ; c for this special case.

I
4o
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which increase monotonically with , i.e. D< L so that (33) defines

the lower boundary of the hyperbolic domain of interest. This boundary has

" a minimum value of and satisfies D @ at L = , (Fig.i).

In the hyperbolic region above this curve (but below r o ) we look

for solutions of (30b) with -"z t , or

1+.)( (35)

and such that the local propagation speed

;L %(36)

is a continous function of L , i.e.

7) /(/-) is continuous. (37)

the

The solution ( inFdograph plane has the following correspondence

with the solution L t), )(xg') in physical space (Fig.4. The trailing

edge 01 of the compact similarity solution corresponds to . = ): o

and the leading edge Cj2 corresponds to the same point inhodograph plane.

* Therefore the solutions of (35) must form a closed curve (as in Fig. 1 ). But

(37) must be satisfied as the points Q > -'2 - are traversed,

and this very strong constraint can only be satisfied by having the (maximu- L,

minimum L) points 4, , lie on the elliptic boundary curve (33).

The reason is that the two solutions i.) have the same slope "'L at

such points. We shall now patch branches of (35) together to satisfv the

foregoing ccnditions.
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One of the two solutions of (35).passing through 0- - (the edge

point) is

I" J (38)

and this branch will correspond to the curve (, in Fig. 4 The other

solution of (35),

D4C _ ----- (39)

has a finite slope D I at 0 Z-"/ . For each L value

on (38) the local propagation speed (36) is

(40)

whereas for (39) the CL) branch of (36) gives the propagation speed, and

in particular

(41)

at Since (41) exceeds (40), it is obvious that we want to

take the C4 branch for the leading edge and C. for the trailing edge of

our similarity solution.

These two branches passing through - L: / need to '-e 4oined by

another solution of (35), such that (37) is satisfied at the two joining points,

and :his is clearly impossible un'ess the latter lie on the boundary (33).

Through each point of (33) there pass two solutions v -) -with the same

....
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and with the same propagation speed. Therefore the solution (39) is extended

[corresponding to .4 I until it intersects the elliptic boundary, and

at the point of intersection the other solution:

I-- (42)

i s constructed, and will correspond to the curve 4 , (Fig. 3).

The slope of this curve is 7.-- i/- at point and the slope

decreases as one goes along the solution curve. This cannot intersect the

elliptic boundary again, because P' // at all points on this boundary

(except the singular point Lz // , see below). Neither can the curve ,_

intersect the D= axis, for otherwise P---4 would be implied. The

exception in both previous statements is the singular point L i - 0

of the differential equation 4(30a). It only remains to show that through this

point there pass a whole family of solutions of (42), each of which satisfies

the cusp condition ) , and one of which corresponds to

In the vicinity of the singular point L /4 7= a we look for a

class of solutions of (42) having the form L- - //)Lm , where C

is a differentiable function satisfying the cusp condition @CC/) o 0

Substitution of this D in (42) yields

4 , / €,) _ -

IK

Or-
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The asymptotic (.b )solution obtained by neglecting the last two terms

is - plus a constant, or

x'(constant)

where the different values of the "constant" generate the family of curves

passing through the singular point. One and only one such curve passes through

and this completes the demonstration of the existence of the

similarity solution. More specifically, the solutions were obtained

as follows.

The first order ordinary differential equations (30b) for the hodograph

were integrated numerically using a grid interval of AL= O IO , and the

results for (/I . and A 6 , /) are shown in Fig.5'. The

results for d -o and 0-/= do not differ materially. The variation of

local propagation speed (c) and upper layer velocity7X is shown in Fig.6

for z. L Starting at the downstream edge()) [Point C in Fig..i,

the valuejof both C and1T decrease until the minimum L is reached in

Fig.5 at the left hand cusp (Point 6_ in Fig.I), whereupon (C /-Lr increase

to their maximum value at the maximum L (Point in Figl.). Both

quantities then decrease to their values at ( ) along a branch vhizh has been

omitted from Fig.4 for the sake of clarity. Fig.7 , contains a plot of the

velocity ; L at the top of the lower layer, and the superscripts Yi indicate

the branch of the hodograph (see inget Fig7 ). The area under the lowest curve

is proportional to the rate of increase of mean square L , because multiplication
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of (8) by L yields

&T. L fXfdL

In physical space the similarity solution looks like the sketch

(Fig. 1), except that point is required to lie on the upper boundary,

.- and this is very unrealistic. But we shall show that the following features

of the similarity solution are generalizable and appear in more realistic

'. calculations. The Lagrangian trajectories of particles entering the leading

* edge must first be displayed downwards, relative to their undisturbed level,

whereas upwards displacement occurs later in the center of the region. The

leading edge of the disturbance moves with the free stream velocity, and the

*' trailing edge moves slower. But the maximum propagation speed occurs at the

crest (max. L), which therefore tends to overtake the trough (min. L). Large

vertical velocities tend to occur as the wave steepens in the center, and the

neglected short wave dispersive effects which become important prior to this

time may extend the period of laminar locking by delaying the "shock" stage.

V. THE INITIAL VALUE PROBLDI

We will now show that the apparent locking occurs under much more general
I

conditions than is indicated by the similarity solution. Of equal importance

is the i,. 'e breaking and c.her strong nonlinear effects suggested by the

following general theory.

The thtor': of quasi-lin ear hyperbolic equations9 assures us tat if at some

time 0 the two independent variables [e.g. 'D (xit) L e in (12)-(13)]

are single valued in the vicinity of , then certain (Rie,.ann) functions
"
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D L, are invariant on certain (characteristic) paths

- whose slopes

are only functions of the local , L , and do not depend explicitly

on X The same property is also true for the slope of the Riemann
.the

[ ] invariants in,/hodograph plane, and so through any given/

point - : 1.. there pass two curves ( L) R (, .,) which

are determined by the form of the partial differential equation and not by

the initial data. This consideration allows us to obtain the functional forms

of R. > from some of the properties already computed for the particular

solutions (Sec. IV). After obtaining the functional forms of . ) we

shall apply them to the general initial value problem.

What happens if the initial distribution of txt) ZO t is taken to

be such that (the as yet unknown Riemann invariant) . L) is independent

of X at t-4, so that two neighboring points(" 1 3 )or (Z) X 3  , -Wx )

(Fig. 7a) satisfy

R+ O3 2.3) K ( L)

The corresponding (but as yet unknown) "fast" characteristic is drawn through

both X/ , and ,X ; and a "slow" characteri.Rtic < >y is also drawn

through 0 The latter must therefore intersect the characteristic

passing through at some point "2" whose ordinate is -

1
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Point "4" is then constructed by drawing a horizontal line through point "2",
and by finding the intersection with the characteristic passing

through X, By definition must be constant on each of the two -

lines or

and it then follows from our assumption on the functional form of t at -

that

J4

This means that the value of 4 ( L) is independent of A at

and therefore at all subsequent times, if it is initially independent of X

The explicit relation , obtained from the implicit 4- constant

relation is therefore independent of A , and the class of functions (27)

'. having this property is already given by the family of solutions of (30b).

Thus the class of similarity solutions obtained in Sec. IV, gives the family

of the constant Riemann invariants. The only remaining question is: which of

the two similarity solutions (passing through a given point ) L,

corresponds to that function {)- L = , ,) which is invariant

along the fast A.JAC. ( characteristic.

W;e have already shown that points "1" and "2" have the sa-e value

or
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-,,-C- .z - L,.

and since these points are also on a characteristic, we have

The only solution of these two equations is

because, D curves form an intersecting family (linear independence).

This shows that the individual values of 3 and L are independent of

time on the slow characteristic if .C 17) is independent of x

Therefore the slowly propagating similarity solution must be the'one

that corresponds to the fast invariant, in the sense that the relation

R. (P ) L,)I may be obtained from '--i.h. (30b) with

D L z L, Likewise, the slowly propagating invariant passing

,'K through this point is obtained by solving d,. / L

The use of this theory may be illustrated by considering an initial r: =

distributicn (Fig. A) for which < ) < 0 , L -L The entire

region to the left of the trailing edge )Q. 1<a in Fig. 1 and to the right of

the leading edge, is called the "constant state" and corresponds to D= 0 L.

Through this point (c j) in Fig. Ob there pass two Riemann invariantsK. 1 .. . . . .
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, with the abscissa axis Lbein the invariant.

The dashed curves through W",N D(x, ) are sketches of the two Riemann

invariants passing through that point, and at the subsequent times these

curves must be tangent to the hodograph of M(, r) Lcx ) . Moreover,

the t- hodograph must evolve onto the two constant state Riemann

* invariants for the following reason. From the region downstream of the

trailing edge X 2a there emerge slow characteristics, each of which

*will eventually be intersected by a fast characteristic emerging from the

* constant state '-' At the intersection the values of must

satisfy , ) ( -L ' (0 /) i.e. -- is the state to which the

trailing edge tends to evolve. The leading edge tends to evolve on the

invariant passing through (0,i) because the slowly propagating characteristics

from A>a are intersected by the fast characteristics originating from

whereupon R_ ,) - The temporal evolution

* of the hodograph is illustrated in Fig. 7b, and thus we see how the extreme

amplitudes in the fully evolved (constant) states can be computed from the

initial hodograph by drawing the (dashed) invariants and finding their

intersections with the constant state invariants.

. The local propagation speeds can also be computed from the results of

Sec. IV. A necessary condition for mode separation is that the propagation

speeds so computed do not overlap, i.e. the minimum propagation speed of the

4 fast mode (Riemann invariant) must exceed the maximum speed in the slow mode.

If this is not the case, the modes cannot separate with a "quiet" intervening

zone.

* These important qualitative and semi-quantitative conclusions have been

verified by numerical solutions of (12)-(13), using a standard finite difference

scheme which satisfies the Courant-Friedrichs-Lewy criterion for computational
4



29

stability. In all of the following examples the results at selected

are given relative to a coordinatc system which moves with the mean speed

of the two infinitesimal amplitude waves, and cyclic boundary conditions

are used for the (essentially compact) perturbation. The numerical program

was first tested against the known solutions of 21a,b).

In Fig. 9 the initial amplitude: ; tPDfx, o= -o.a

was chosen large enough to prevent the modes from separating. Since the fast

wave propagation speed decreases upstream from the leading edge the slope of

the leading half of the wave decreases (Fig. 9a). The L wave steepens

on its rear side as the wave (Fig. 9b) evolves (from zero) into a crest and

trough configuration, and a shock tends to form in the downward sloping

interfacial region at t = 2.5 (Fig. 9b). Some of the points lying in

the shock region have been deleted (from Fig. 9a, 9b, but not Fig. 9c) for

clarity of presentation. The deleted points are obviously numerical artifacts

since they do not preserve the D< 0 inequality, as required by the solution

of the differential equation. Fig. 9c shows the expected evolution of the

initial hodograph (Lc i) onto the Riemann invariants, together with

the numerical artifacts of the shock.

For the infinite H case we have shown (Sec. III) that the evolutionary

equations (17a,b) are independent of . Fig. 10 gives the results of an

exTiicit numerical integration of (12)-(13) with H;/o5 jOq, and the

numerics have been checked against the exact solution (17d). The initial

state consisted of Gaussian curves forP and , as shown in

4i
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Figs. 10ab. Also shown is the evolution of -Dext), t(xt) . and

the hodographs are given in Fig. lOc. Of special interest is the "bursting

bubble" effect (Fig. lob), which is shown in 2.5 times as great resolution in

Fig. 11. There is a rather spectacular eruption of the boundary layer at

t .75 just prior to the time t 1.1 of shock formation, and there

is the suggestion of an event which transfers low momentum fluid out of the

boundary layer. There is certainly no tendency for the modes to separate,

and the computer printout at t > 1.1 (not shown here) indicates that

the mid region is not quiet but (numerically) chaotic.

VI. LONGWAVE THEORY FOR THREE DIENSIONAL DISTURBANCES

We now generalize the foregoing work by introducing a spakwise velocity

WCX, , t )  scaled in the same way asiL relative to the longwave expansion

parameter ( I , where the spanwise coordinate is scaled in the

same way as X , so that the nondimensional continuity equation is

-. U, + V.+% W
For the pressure gradient we have aP/a - 'v/dt in a subsequently

defined boundary laver < L CX.it) , above which is an infinitely

deep 40 ree stream whose velocity t. equals /fOe() at all L, %

.4 It follows that ??4X - 0(O.) V-O= P/ for :< LL , and

the longwave momentum equations are

[4 (45)

C1W1( e OsX4 V -wv (4~6)

From ecs. 44-45 we obtain the vorticitv equation

Li d
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A compatibility requirement on the given initial values of oL' W

is that U1, Wo on and above some surface r 'a(,<' and

top surface of the boundary layer. Since the Jacobian of (&,Aw)

in (48) vanishes on this surface, a material point on it will have the

same value of )(and the same v at time t as it had at

•to .0 Let is therefore define the upper boundary y - (X,0, .)

as the solution for of any two of the equations: (J,4, E, b1i

W Cx,7 Y5, ;6) . UY (,, Y * j) constant. Since particles on this

surface must remain there, the component of velocity is

(49)

This variable free streamline boundary (i.L Le ) is necessary, of course,

for the compatibility of eqs. (44) - (46) and the lower boundary condition

If we allow the initial (Uj W ) to be non-zero o 1 then two

parcels moving towards each other on the line which connects them, and

having equal velocities perpendicular to that line must "collide" in a

finite time according to eqs. (45) - (46). This is the simplest

indication that horizontal cenverge - are amplified. But it is desireable

to remove this special case from consideration by imposing the initial

condition U IA, 0, 1, 0') = o &V WX, 0, E 0') , in which case

U(IcO, J)zo= k/ at all times, and the solutions of our inviscid model will

aticf,- the important visco _ boundary condition.

>,- next si7.]est case has a phane of synxmetry ( Ev o for (U V)
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and ' is an antisym.etric function of .anishing at large I )X I&

" en the derivative of (46) is evaluated on 1=0 where wj , )r

we get the important result

%~

I (50)

where , t &) are the Lagrangian

coordinates of a parcel located at # = qT ezo

Eq. (48) with (50) may also be integrated for parcels on the axis and we get

Eqs. (50) - (51) show that if a parcel has initial spanwise convergence

4 its spanwise convergcnce increases, and its vorticitv

decreases up to the time

= (52)

whereupon a discontinuity forms in the vicinity of the parcel and U - 0

On the other hand, parcels with spanwise divergence (a& >c) at -

increase their vorticitv linaarly with time, and this behavior suggests a

rationalization for the vorticity anomaly 0 ) assumed previously.

Confining attention to the motion of parcels on the &= 0 axis,
ec uat i o.

es. (L5) give " B1 using this and (51) in the transformation

ZL C
C,- &
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Eliminating and simplifying the result yields

which, at any t, is a readily integrable first order linear equation for y.

The slope of the characteristics in the(., ) plane is

(54)

and the derivative dy/4j along these curves equals the right hand

side of (53). Integration of the ordinary differential equation along the

characteristics gives

A simple and interesting example occurs if we take S, corres-

ponding to an initially linear downstream velocity profile, which is

perturbed by a LD, corresponding to a spanwise circulation cell.

In this case (5,) simplifies to = constant - , and the integration

of d/ along the characteristic lines yields the solution

#t ) (55)

(50)

and fror, we 'have
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(57)

The main result (eq. 57) gives[ with the help of (56)] the normal veloc.ty

at any desired point in terms of the initial values of V on

For further discussion suppose that C) in the lower half of the

interval , and G in the upper half; a distribution corres-

ponding to an initial updraft (V O) on the axis of an isolated initial

disturbance, and such as might be reilized by squirting some fluid out of an

opening in the - boundary. From (55) we see that all the parcels in

the lower region are displaced upwards in time with f. 0 at time ts

(eq. 52) at the parcel having the maximum initial value of y -

The velocity profile (56) in the vicinity of the shock has relatively low

shear at small y, and large shear I' 4/'Zt -r t 00> in the4

uppermost region. Since U v-0 at =--0  , the lower half of the velocity

profile will have much smaller downstresMvelocities 'han occurs at the same

elevation in the undisturbed flow (&a -- . The region of anomalously

low C. might be identified with the spike and the positive vorticit'

anomaly in the upper region is also explained.

0O

0
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If the initial V is reversed, so that downdrafts (V4 0) occur

(dn I-Zo) with C in the lower part of the boundary layer, then

(55) is finite in this region for finite t , and no discontinuity occurs

here. But the vorticity in the lower region increases with t as the

descending fluid brings large &k close to the boundary. The large V

singularity occurs in the upper region and further downstream from the

strong shear region which forms at small The limiting factor in the

latter region may therefore be the short wave instabilities on the generated

shear layer, rather than the wavebreaking at larger

In general eq. (53) will have two singular domains, one of which

appears in the illustrative example of this section, and the otherLi tg.C4O

appears in the two dimensional theory of the preceeding sections. The

unifying thread is that "shocks" or largeV rtcm To appear if the horizontal

divergence has negative values in the initial conditions.

It remains to indicate how the motion off the axis of symmetry can be

computed. For the most general longwave problem we have -

U Z + 1, , from the momentum equations. Whtr%

Itese are substituted into the Lagrangian form of the continuity equation,

which states that the Jacobian ?(,- I we obtain

At an,, time t this zive, a first order linear equation for

with the boundary conditio,i e tXO, ) , and the equation can be

integrated b%- the method of characteristics.I
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VII. CONCLUSION

Longwave disturbances having small finite normal velocities evolve

such that the maximum V becomes comparable to the horizontal velocities

of the basic shear flow, and there is a tendency for wavebreaking at later

times (where the theory must be modified to include the neglected short waves).

The two dimensional model (Secs. II- I ) illustrate this effect in

the simplest way, and the detailed calculations provides useful information for

constructing a more general theory of the breakdown of a laminar disturbance.

We refer to the tendency for wavebreaking to appear at the center of a

compact initial disturbance whose endpoints separate linearly with time

T" ro
(Fig. |i ). The important discontinuities ("shocks") form not only when the

A

upper layer is infinitely deep (1-00), but also in the .... e - aeede,,

case of finite H for which the horizontal pressure gradients in the boundary

layer are important.

The three dimensional longwave theory outlined in Sec. VI shows that

the large v effect is generalizeable, and removes or weakens the

assumptions made for the two dimensional theory. In particular the

vorticity anomaly in the latter, is rationalized in terms of an initial

spanwise divergence, and the spanwise convergences are responsible for

the evolution of large v. In general (eq. 57), any weak horizontal

convergence on the ,xis of symmetry will lead to large normal velocities)

s1.~such as is observed in the laminar spike just prior to its breakdown.

0

re

- _ _ _ _ _ __- , . - - -
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The time t (52) when the first shock tends to form equals the reciprocal

of the minimum horizontal divergence (43) in the initial state, and at the shock

point the shear 4(5;) vanishes independent of Ib I
If 1%a S - J lj J ."en the maximum shear (U a2) at t is also

independent of the initial amplitude. These features, as well as 'V

in the shock region, strongly suggest that

does not tend to the undisturbed ( S 0 ) flow, in which case the latter

is said to be unstable to small finite amplitude perturbations (d).

Although the post shock stage ( t a ?$ ) is beyond the scope

of a long wave theory, we believe that the wavebreaking effects will lead to

an even greater degree of irreversibility than is indicated for the

pre-shock stage.

The longwave theory is also applicable to cylindrically symmetric

perturbations in a round jet bounded by free streamlines (flow out of a

nozzle). Nonlinear 3mplication of the outward radial velocities

is implied, suggesting eventual- entrainment-of the-irrot-ational -fluid

outside the free streamlines( LA' S)

. .
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LEGENDS
1

Fig. 1 (After Kovasznay et al. (a) Normalized vorticity isopleths on the

axis of symmetry of a developing laminar spike. is normalized

by the boundary layer thickness 0 , and Lime is normalized by the

oscillation period T Stretching the diagram horizontally by a

factor of five gives a non-exaggerated picture of the disturbance in

the C-1 plane. (b) Pictrial view of the distribution of the

streamwise vorticity in a plane parallel to the boundary at a later

stagespike development than in (a). (c) Isopleths of velocity

normal to the boundary at stage (a). (d) Isopleths of normal

velocity at a stage later than (a) and also later than (b). The

maximum streamwise vorticity at stage (d) is only 1.0/0.6 times

the corresponding value in (a).

Fig. 2. An undisturbed shear flow of non-dimensional height L-I lies below

a free stream of non-dimensional speed T- 1 in a channel of

height H. The finite amplitude long wave perturbation al-bl-b 2-a2

contains another layer of uniform vorticity, and L (x,t) is its

lower boundary.

Fig. 3. Schematic distribution of the regions of strong vertical velocity

generated by a positive vorticity anomaly (stippled) in a boundary

layer flow with H .
0  The strong updrafts occur in all three

layers, whereas the strong downdrafts do not occur in the lower

boundary layer. The relative positions are such as to generate a

clockwise eddy.
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Fig. 4. Sketch of the hodograph plane in which corresponding values of

L (x,t) and D (x,t) are plotted. The governing equation is

hyperbolic above the curve D= LY , and the cusped curve

al-bl-b2-a 2 is a similarity solution for a locked mode.

Fig. 5. Numerical solution for the locked mode similarity solution when o-=0

(vortex sheet) and when , with H-2.0 in both cases.

Fig. 6. Partial hodograph plots of local propagation speed c and upper layer

velocity U for 0/'o . The two cusps on the left correspond to

point b2 (Fig. 2). The cusp on the right corresponds to the point b1

and the central cusp corresponds to a2 . The curves connecting the

central and right cusps are not drawn.

Fig. 7. Partial plot of lower layer velocity V on different branches of

hodograph (see inset). The areas under the lower curves give the

rate of increase of mean square L. The symbol (a) is for eO

and (x) is for

Fig. 8. (a) The fast characteristics A+ and the slow characteristics

emerging from the i D axis, along which the &iemann invariant

.(D. L) is assumed constant. (b) The temporal evolution of an

initial hodograph L=l onto the "constant state" Riemann invariants.

Fig. 9. Large amplitude numerical calculation,

F • (a) The initial D (x,o) is Gaussian. t=.(0)) t= -f(K))

t - 0 (+t =.s(4) (b) The initial L (x,o)-l=O) OA Lo; .

(c) The initial (+) and last computed ( J ) hodograph. The points

above D=0 are numerical artifacts of the shock region The solid line

is a Riemann invariant drawn through min D (x.t) and it should pass1)

throuLh min D (x.o) according to the analytic tiecrv. H=2.

Grid interval = .0125, t= .01.

p1



*141

Fig. 10. "Uave breaking when Z. (a) ')) , (b)L()

(c) 1)(L) for t= 0 ( ') C and l'0(Q)

Fig. 11. The "bursting bubble" of Fig.19b in greater resolution ( X = .005)

for the times indicated near the graphs. For t = 0.6, 0.7, 0.8

only the central regions are drawn. Note that these results are

independent of J (16a,b).
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Printed in Great Britain

Laboratory models of circulation in shallow seasU
By J. A. WHITEHEAD, JR

Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, U.S.A.

[Plate 1]

Three laboratory experiments are described. The first was made to observe the flow
field of circulation in a model given by Stommel & Leetmaa (1972). The experiment
consisted of a very shallow (1 or 2 cm deep) annulus with an inner heated wall ofradius
25 cm and a cooled outer wall of radius 57 cm, all mounted on a turntable. When the
Ekman number was large the flow was steady and resembled the solutions for a non-
rotating estuary given by Hansen & Rattray (1965), but when the Ekman number
was small the flow became time-dependent. Values of shear and stratification obtained
from theory indicate that the flowing water probably underwent baroclinic instability.
It appears that such instability may develop on real shelves.

The second experiment consisted of a shallow sea of constant depth bounded by a
deep ocean through a uniformly sloping continental rise. The experiment is cooled from
above and there is a region that exhibits sinking convection cells, which form the
coldest water. This water then spills off the right-hand side of the shallow sea (looking
downstream for counterclockwise rotation) and forms bottom water in the deep
experimental ocean.

The third experiment is a rotating version of the dam-break problem in which a
density current is generated after a barrier has been removed. The rotation causes the
current to lean against the right-hand wall (looking downstream for counterclockwise
rotation) and turbulent eddies are detrained to the side rather than vertically.

1. THE STOMMEL-LEETMAA SHELF MODEL

Although there have been many theoretical studies of the dynamics of the oceanic waters on
continental-shelf regions, few have been concerned with theories of the general circulation in

such regions. One of the first attempts appears to have been an idealized model by Stommel &
Leetmaa (1972), which concerns the flows on an infinitely long, straight, constant-depth shelf,
subjected to wind stress from above and to fresh water run-off from the continental side. The
effects of friction, diffusion, and cross-shelf advection were retained in the governing equations,
which were derived by the use of an expansion procedure based on the fact that the ratio of shelf

depth to width is very small. Given values of the top wind stress, fresh water run-off, depth and
width of the shelf, and 'eddy' properties of the water's viscosity, diffusivity and alongshore
pressure gradient, they predicted the cross-shelf density gradient and alongshelf velocity. The
numbers believed to be appropriate for the Mid-Atlantic Bight were used to assess the appro-
priateness of the model to the real shelf, as discussed subsequently by Csanady (1976), Scott &

Csanady (1976) and others.
Here I do not continue to discuss applications of this theory to real shelves, but instead observe

features of this model through observations of flows in a very shallow annulus experiment in the
laboratory. I desired to'sec if any additional boundary layers or instabilities could be observed, or
whether the flow otherwise did not behave as predicted. The dynamics of the experiment differ
from the above theories because there is a heat flux rather than a water flux and there are rigid

boundary conditions at the top. Hence a brief reformulation will he given.
! [ 71 1
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584 J.A. WHITEHEAD, JR

r Formulation of the problem

The model consists of a layer of fluid of constant depth d, breadth L, infinitely long, and
subject to a lateral temperature gradient iT/ax across its breadth as a model of lateral density
gradient. The system is rotating at rate if in a field of gravity g. The viscosity v of the fluid is
constant, as is the thermal diffusivity K and the coefficient of expansion a. The Boussinesq
equations will be presented in a dimensionless form by using d as the vertical length scale, L as
the horizontal length scale,fd as the horizontal velocity scale,fd2/L as the vertical velocity scale,
pf 2 d as the pressure scale (p is average density), and by representing the temperature as

T' = (x +dT)ZT/ax, (1)

so T is the dimensionless temperature correction to a linear temperature distribution in the
x-direction (across the shelf).

If d << L vertical velocities will be much smaller than horizontal ones except near the lateral
edges. The Boussinesq equations with all terms of order d/L neglected are

-v=-p+ Eu,, u = Ev, (2a, b)

ps = -Sx, u = PT, (2c, d)

where a subscript denotes partial differentiation and

S =_ (ga /f 2) aT/ex, P M K/fd2 and E v/fd2.

The simplest solutions are antisymmetrical above and below the plane z 0. Pressure at any
height z can be found by integrating (2 c). The x-derivative of pressure at this value of z is

p, = -Sz + C, (3)

where C is the lateral pressure gradient at z = 0.
The left side of equation (2 d) is a lateral advection of heat. The right-hand side is the 'short-

circuiting' effect first noted by Taylor (1953) for problems where there is advection in one
direction and conduction principally in another direction with smaller length-scale.

To model'wind stress', it will be assumed that the top and bottom boundaries move with equal
and opposite velocities. In addition there will be no vertical heat transfer through the boundaries,
and hence the boundary conditions are

u=+U, v=+V and OT/z=O at z=+j. (4)

Solutions have the form
u = (I-S- V)g1 (z) + Ug2(z), (5a)

v = + (IS+ V)g2(z) + Ug1(z) -Sz, (5b)

E E flEz
* T = (4S+ V) J5g 2(z) + U- g1 (z) p(cosh-cosfl) + V+ U)sinh

+(JS+V-U)sinl, (5c)
where

/1 = (2E) -, (6a)
g I(z) = [sinh P(z + J) sin fl(z - J) - sinh P(z - J) sin P(z + J)]/ (cosh,8- cos/, (6 b)

g2 (z) = [coshj(z + J) cos/1(z - coshfl(z -4) cos,8(z + J)]/(coshfl- cos/P). (6c)
[72



CIRCULATION IN SHALLOW SEAS 585

* The flows vary linearly with S, V, and U, and functionally with E. The solutions have very

different structure depending upon whether Eis large or small. If E is large, the solutions can be

reduced to the following polynomials:

I - (S13! E) (z3 - Jz) + 2Uz, (7a)

v = 2Vz, (7b)

ES (z5  z6 z\ U 1 3 W

U T '
0 1 -1 0 -l 0

0

FIGURE 1. Profiles of cross-shelf velocity u, along-shelf velocity t', and temperature T as a function of/f = (2E)-i
for no velocity of the boundaries and S = 1. (a)ft= 64, E = 0.00012; (b)ft= 16, E = 0.019; (c) f = 4, E = 0.03.

The solutions for u and Tare equivalent to those derived by Hansen & Rattray (1965) as model
of estuarine circulation (no rotation). For E small, the solutions can be represented as Ekman
layers plus interior flows because the functions (6b) and (6c) approach

g,(z) !:- efl(-|sin #(z - 1) + e-Az+Vsin/#(z + ),(8a)

g2 (z) e-D)cosfl(z-J)-e- +il cosfl(z+ J) for 6 >> I. (Sb)

4l For the structure of the solutions to be more clearly visualized, they were calculated by com-
puter from equations (5) and (6) for three values of F, as shown in figure 1. Because the solutions
are antisymmetric about zero, only the upper half of the solution is shown. At the top, the Ekman
number is small enough for the Ekman layer to be clearly visible near the boundary. In the
interior there is a linear stratification and constant shear due to the thermal wind equations (the

basic state of the Eady problem). At the bottom, the Ekman number is large enough for the

solution to be approaching the limit of Hansen & Rattray.

[731
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The experiment

A wide cylindrical annulus was used, rather than a very long, straight channel, to avoid
problems with end walls. The tank shown in figure 2 had a Perspex bottom 1.25cm thick and
114 cm in diameter, lying on 2 inches (ca. 5 cm) of insulating styrofoam. The cover could rotate
with respect to the bottom tank and was covered by two inches (ca. 5 cm) of styrofoam. The depth
of the test fluid could be held at 1, 2 or 4 cm, depending upon the height of the cover above the
bottom. The inner wall of the annulus was composed of a Perspex disc of 25 cm radius, I cm high,
upon which was mounted a waterproofed 33 Q heating wire. Adjacent to the outer wall of the
annulus was mounted a copper tube of approximately 1 cm outer diameter. This was flushed by
water from a thermostatically controlled bath held at 25.3 + 0.1 'C. Holes of diameter 2 nun were

drilled down through the cover of die annulus to allow access by dye injectors and temperature
probes; when not in use the holes were covered with stoppers. The entire apparatus was mounted
on the 2 m turntable at Woods Hole Oceanographic Institution.

4-

iU;I'Rv 2. Sketch of thw cylindHrical exlperimental al l)aratus. 1he cross-Iached nit lcrial is Perspex. Il'h speckh-d
n al tieal is stvyrohat ni. The uj .ier lid was free to rotate with n'sJcc)eCtt to he lbasin. The clear area contains
water.

The apparatus was like a large flattened annulus with a width: depth ratio of approximately
30: 1 for a I cm depth, 15: 1 for a 2cm depth or 7.5:1 for a 4cm depth. The solution of the basic

flow, \hich was developed in the previous section, is analogous, but different from, the interior
and the bottom and top boundary layers for a deep annulus as analysed by Robinson (1959). No
solution is developed here for the side-wall boundary layers.

* Typical measurements of temperature as a function of radius are shown in figure 3. The solid
line gives the predicted profile at midplanc as calculated in the next section. The temperature
gradient varies with radius because the heat flux per unit area varies. This illustrates one of the
mtost essential features of the Stommel-Leetmaa model -that temperatures at different depths

t ralI ] (ach other in the presence ofa continuous change in temperature in the lateral direction.
S'lThe data shown here were for zero rotation but measurements at 'krman numlers down to

approxiniat.ly 0.02 were almost identical. However, the objection of the experiments was to
observe tlie small ;kman number limit. They were not very succcssful in this respect biU'iust' a

tiie-depetudent flow was almost always observed )elow an Ekman number of 0,02. This is miost
clearly shown by a series of 21 runs conducted to determine temperature between the hole of

* 30.4 crn radius and the hole of 50.8 cm radius its a function of rate of rotation. The results arc
shown in figure 4 for depths of I cm (solid circles) and 2cm (open circles). The temperature

[74]



CIRCULATION IN SHALLOW SEAS 587

difference does not increase substantially for the 13 run' with E > 0.02, but for the runs with
E < 0.02 the temperature difference began to increase, but a temporal variation was observed in
the signal. The timc-scales of' the variations are so long that the average of the tilne-varyinig

. signal is not statistically well lefined even after 8 h. The extrcmes ofrthe (eiperalur" dilli'reces
"* for each sample are shown in figure 4 so that the transitions to a time-dependent state could be

illustrated. The values of the temperature differences were divided by a predicted value at zero
rotation, which will be called ATp, derived in the next section.

To visualize the flow, the styrofoam cover was suddenly taken off the lid and thymol blue
streaks were photographed in the flowing liquid, but heat losses are so great as to render the
subsequent data of only qualitative value. The time dependence comes from big eddies that
slowly migrate around the tank. The eddies are usually as big as the 'shelf width'.,4

A0 40 50

radius/cm

FiGURE 3. Measurements of temperature as a function of radius r at heights I mm (lower), 5 mm (middle), and
9i mm (upper) from the bottom of the tank. The apparatus was not rotating for these data, but data with
E = 0.3, 0.15, 0.03 and 0.02 were almost indistinguishable from these. The solid line is a prediction of
temperature dependence at the midplane of the tank.

Quantitative comparison of experiment and theory

The heat flux (Q) per unit length of shelf can be determined by the following integration:

Q uTdz. (9)

In the two limits of E small and E large, the solutions (7) and (8) can be used in the integral
(9) to predict the heat flux. The integrated solutions are

S2 4! US 4! U 2

Q= 9!PE2 9!JPE 6! P br E> 0.1 (I0a)

and

EQ =_ (,S± J--U) 2 - [ 3
(.S+V)

2 +4(JS+V)(U- U2 ) ] } for EK< 0.0. (lob)

To compare the predictions uidh the experimental measurements of temperature as shown in
figure 3, equation (10a), with U = 0, was put into dimensional form, the cross-shelf direction x
was replaced by radius r, and the heat flux per unit radius was made equal to H/2Xr.

An ordinary differential equation for T and r results, which can be integrated to give

7" = 3 (9! tt K ,12nCs,,y~g2dgp)'r1 + To.,II

The parameters of the experiment were heat flux II 55W, g = 98cms- 2, specific heat

[751
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,- 4.16Wsg-IK- n, a ='x I 0-4K- , I,__ 0.01cM2s-', d I cm, p I gcm a and
K = 0.0014cm2 s - 2. With these values (II) becomes

T- T = 12.2-0.837ri, (12)

where T is the temperature at the outside radius (56 cm). This relation is the solid line in figure 3.
The measured temperature distribution is close to that predicted although it is slightly less in the
interior, possibly owing to a slight error in the thickness of the test fluid.

The temperature difference between the hole of 30.4 cm radius and the hole of 50.8 cm radius is

ATp=3.31K for d=lcm,
and ATp = 0.42K for d= 2cm.

These values were used to normalize the temperatures in figure 4.

05 , ,'I ' ''' ,,I ]

4

3

It 0 0 %0 0 _'0
0 -

12 10-1
E

FIGURE 4. Measurements of temperature difference at the midplane between radii of 30.4 and 50.8 cm as a
function of Ekman number, with constant heating voltage. The circles are means and the bars denote
extremes in the measured AT over an eight-hour period.

Since the ratio of (I Oa) to (I Ob) is (4/9!) 1 E - 3, and since temperature gradient scales as H, in
(lOa) and (lob), the relation 0.022E- 1 (shown by the solid line in figure 4) is the solution in the

small-E limit. The temperature difference was beginning to increase as E decreased in reasonably
good agreement with this relation until the fluctuations became large.

Stability of the flow
We conclnde that the slow-rotation limit of the theory is realizable and stable, but at high

rotation an instability developed. The probable origin of the instability is suggested by the
following considerations about the stability of the solution.

To estimate whether the small-Ekman-number limit is baroclinically unstable, a stability
criterion derived by Pedlosky (1970, equation (3.11)) for a two-layer fluid was used with solution
(5) to calculate the criterion

13 j5[JS +U+ V] S62 < 8 [l-e]+r (13)

for instability, where c = d/L. For our experiments with U = 0 and V = 0, equation (13) can be
put in a more convenient form:

for instability, where Pr = 1/K is the Prandtl number.
[76]
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The following values are typical of our experiment: Pr = 5.5, E = 0.01 (,8 = 7.07), and
= 0.04. These will give S < 0.60 for instability. Using LD T/Ox = 10K, L = 25cm,

f= 1.0s -1 , a = 3 x 10- 4 K-1, and g = 980cms - 2, we get a value of S of 0.12 which easily fits

the instability criterion.
Hence it is reasonable to assume that the eddies observed here are produced by baroclinic

instability. For a real shelf, with Pr = 1, E = 0.01, and e = 0.001, the criterion (14) (without

wind stress) would be
S < 298.

Using a salinity gradient equivalent to a AT of 30K, L = 100km,f = 10- 4 and a = 3 x 10- 4 we
get a value of S of 88, so again the criterion for instability is met.

The effect of a rotating lid

Equation (13) implies that we can stabilize the fluid by imposing differential flows in the top
and bottom boundaries. This effect occurs because such differential flows do not generate
vertical shear (for constant S) but do alter the stratification in the interior for the small-E limit

(see equations (5b, c)). The rotating lid was incorporated to see if we could detect such an effect
but it did necessitate the removal of some insulation. Of course in this experiment S will change
with lid rotation anyway, so in our experiments the radial temperature gradient was measured

directly by thermistors implanted in the bottom of the tank. In addition, insulation was removed
from the top lid for visualization. Since heat losses were then quite large the observations of
whether a flow is stable or not are only qualitative, and a quantitative verification will require a
better insulated apparatus. Nonetheless a qualitative verification was obtained. Figure 5 (plate 1)
shows three flows: when the lid was rotating faster than the apparatus, at the same speed, and
slower. When the lid rotates faster, the flux in the Ekman layers due to differential shear is in the
same sense as the buoyancy-driven flow; thus heat transport is aided, stratification is increased,
and shear is decreased, resulting in a net stabilization. The dye streaks in figure 5 (a) are laminar
except for internal waves that are radiated off the dye inserts. When the lid did not rotate
differentially, the experiment was still in an unstable state as shown in figure 5 (b). When the lid
rotated slower than the apparatus, the flux in the Ekman layers due to differential shear was
opposite to the density-driven flux, i.e. water flows toward the centre in the top Ekman layer and
away from the centre in the bottom one. Large shear may even force a density inversion and

gravitational instability. Figure 5(c) shows very strong turbtlence with small eddies that rapidly
mix the dye. For these runs the expression

z2flPr(JS+ V)Sc2,

which according to (13) must be less than one for instability (for 32E/$i.2 < n4), was respectively
of the order of 40, 0. I, and - 40. Time dependence rendered these estimates accurate to only

a factor of two.
Eleven runs were made with the tank at a depth of 4cm. and /]- 0.66s. ', which gave an

Ekman number of 9.5 x 10-'. The velocity of the top lid was left constant for 2 hours, after
which streak lines were photographed. The results were that the Pow was laminar when
nt2/jPj (J.$ + V)SC2 = 10, 7, 1.3, and 0.9; the flow exhibited large eddies like the kind in tile middle
of figure 5 when n2/1Pr(JS + V) S_2 = - 2, - 5, an(] - 40.

In v\iew of the uncertainty about the estimates of lateral de'nsity gradient, it appears that the
main prediction of the theory- that tile flows are subjected to haroclin'c instabilities or actual

1771
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density inversions when certain critical parameters are exceeded -has been verified. Although
it is tempting to report more quantitative details, the effect of heat loss, depth variation up to
1 mm, and influence of the measuring probes may dominate them.

On real shelves (which might have a density flux due to fresh water run off rather than heat)
we note that winds would aid the flux of low density water offshore, as does our prograde rotating
lid, if they are blowing offshore or to the left facing offshore (in the Northern Hemisphere and on
the assumption that low density water is near the coast). Those winds would tend to stabilize the
flow. When winds blow onshore or to the right the density flux would be hindered and the waters
would be destabilized as in figure 5 (c).

The effects of a free boundary

If there is a stress-free boundary above the water for small Ekman number, the Ekman layer
is changed to a zero-stress Ekman layer. This layer transforms the uniform vertical shear
generated by the thermal wind relation to zero and is not capable of advecting as much heat
laterally. The solutions of equations (2 a-d) in the limit of small E, with the boundary conditions

u/az= v/z= aT/Oz = 0 at z 4,
u=v=aT/Oz=0 at z=-4,

have the form

u - (S/2fl) etA-P&[sinfl(z- ) - cosfl(z - 4)] - (S/fl) sin fl(z + 4) e-&+t, (15a)

v = (S/2fl) e-(z-±[sin fl(z -4) + cosfl(z - 4)] - (S/fl) cosfl(z + 4) e-A +-S(z + 4) + S/fl, (15b)
T = (ES/2Pfl) et(,-F[sin fl(z - ) + cosfl(z - 4)] - (ES/Pfl) cos fl(z + 4) e- A+) - (ESIP) (z).

(15 c)

This solution differs from the rigid-lid solutions in two ways. First, heat flux per unit temperature
gradient is decreased by a factor of f- 1 owing to the presence of that factor in (15a). Secondly,
a net transport along the shelf (around the annulus) is predicted in (15b). To test whether
transport is observed, the rigid lid was removed from the tank, and the temperature of the bath
was set at 5 'C so that the water in the apparatus would remain cold and would not transfer much
heat to the atmosphere. The basin was covered with clear cellophane. The voltage of the heater
was set at 30V a.c., so that an r.m.s. wattage of 13.5W was produced. The apparatus was
rotated until the temperature field of the liquid built up to a steady value, after which dye was
injected into the fluid. Photographs of the dye streaks were taken every 5 s to record movement
of the dye, and a steady flow around the cylindrical tank was observed.

One can predict velocity as a function of heat flux by using solutions (15a-c) to predict O T/x
as a function of heat flux: aT/ax = (8faHf1/dpCg2cLPr)i,

where H is heat flux per uri length of shelf, C, is the specific heat, and a is the coefficient of
expansion. The velocity as a function of heat production per centimetre of arc is

v = 2(gaH/pC, Pr)I (2E) - 1.

For the experiment, the appropriate magnitudes are g = 980cm s- 2, pC, = 4.16 W s K-Icm 3 ,

a= 3 x10-4, H= 0.09Wcm- 1, and Pr = 5.5, and so the velocity as a function of E is givel by

v = 0.20(2E)A.

For this experiment E = 0.311 x 10 -2, and the above E-formula gives a velocity of 0.48 cm s-

I 781
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FIGURE .5. Streak lines for the first experiment when thc upper lid is rotating (a) faster than the tank. (b) with the
tank and (c) slightly slower than the tank. The streak lines on thc left are wavy owing to internal lee waves
bring scattered off the d-ye probe; otherwise thle flow is laminar. The strcak lines on the middle reveal large
sluggish eddies. On the right the differential shear of the lid is zencrating a verv small stratification that has
considerable small-scale turbulence which mixes the dye. The Ekman number is 9t.5 x 10-,.

FIGURE 6i. fa, Streak lines for moderate rotation. The dark dye comes off wires that are strung across the tank.
Sb) Streak lines for fast rotation. The geostrophic eddies are visible throughout thle sheif, sorile with sinking

regins.(Facing 
p. 5930)



CIRCULATION IN SHALLOW SEAS 591

the velocity of the dye was about the same. Other runs were done at different rates of rotation, and
observed velocities did appear to agree crudely with computed velocities, but there were sufficient
heat losses and wind drag to discourage attempts to obtain precise quantitative comparisons.

In summary, even this simplest shelf model can often be unstable. Winds can affect the model
by generating circulations that will either increase or decrease heat (or fresh water) transport and
thereby alter the stability. Alongshore currents can be generated as predicted.

2. A SHALLOW SEA WITH DENSE WATER FORMATION

If waters in a shallow sea are subjected to much surface cooling and evaporation, they are
found to be denser than water in the neighbouring deep ocean. This is due to the effect ofsurface-
evaporative and sensible cooling, both of which decrease temperature, and the first of which
increases salinity also. Often this denser water stays confined on the shelf owing to the action of
wind set-up or because of topographic barriers. Sometimes the water is observed to spill off the
edge of the shelf and irreversibly contribute to the deep waters of the world's oceans. An out-
standing and important example of this later class of shelf flows is the flow off the shelf of the
Weddell Sea, as discussed by Gill (1973) and Killworth (1979). A recent observation by Foldvic
(private communication) of a strong bottom current coming off the Weddell Sea through the
Filchner depression emphasizes the importance of shelf regions in generating the thermohaline
structure of the oceans.

The main part of the second experiment (built by T. Sugimoto, who also did the bulk of this
experiment in consultation with the author) was a rectangular basin mounted on a rotating
turntable. In the basin is a square shelf 50 cm x 50 cm x 5 cm deep connected by a narrow (10 cm
wide) slope to a deeper basin 30 cm x 50 cm x 15 cm deep. The slope thus emphasizes the dramatic
contrast between shelf (which in our model has zero bottom slope even though real shelves do not)
and shelf break. The enclosed fluid is cooled through a top lid and heated through an offshore
aluminum side wall. This experiment thus also emphasizes winter, or intense evaporation, rather
than summer or fresh-water run-off which was emphasized in § 1. Outside the wall is a stirred
thermostatically regulated bath. The bottom of the top lid is composed of Perspex plate 6 mm
thick above which is a channel 6 mm deep, 56 cm wide, and 91 cm long, through which chilled
water is made to flow. The channel is covered above by a 6 mm Perspex plate. Running water
is introduced at one end of the lid and removed at the other end, the water coming from a cooled
thermostatically controlled bath. The temperature difference between the test fluid and the
water in the upper lid was much larger than temperature variation in the tank, so to a first
approximation the fluid was cooled uniformly from above. Side walls and the bottom of the test
chamber were made of Perspex plate 12.6 mm thick for better insulation.

Photographs of the current pattern were taken by a 35 mm camera and also by a 16 mm cifn3
camera 1. 1 m above the top of the basin. Visualization was with the thymol blue method in which

di a pH-sensitive indicator is buffered to its transition pH, so that an electric voltage applied

between wires results in the fluid near the wires changing from yellow todark blue. It was jossible

to trace the movement of the fluid for a few minutes thereafter. Temperature in the basin was
measured by a thermistor put through one of 25 small holes in the top lid.

It took over 3 h for the temperature distribution of the test fluid to become steady. Although
the current patterns change almost continuously with rate of rotation, they can be classified into

the following three groups.

L 79]
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(a) Very slow or no rotation. The tank is smaller than the Rossby radius ([g(0p/paz) d2]If-1).
Vertical circulations predominante so that flow is like a Hadley cell. Water is heated at the
offshore wall and flows toward the inner shelf, bending slightly to its right (for anticlockwise tank
rotation). The heated water is also being cooled from above so there is a surface-mixed layer with
convection rolls aligned in the di~ection of flow. In the 'sinking' region the mixed layer extends
to the bottom. The densest water in the tank is in this region, and it sinks under the surrounding
water, makes its way to the shelf break (curving to the right) and plunges off the edge of the shelf
break to form bottom water in the model 'ocean'. The sinking region is limited to a narrow inner
coastal zone, the width of the zone being less than 2 cm.

5 cm ... 5.

f a) 24.25

(b)
-23.5

(c) -=-- 23.25

FIGURE 7. A temperature section from shelf to shore for (a) no rotation,
(b) moderate rotation, and (c) fast rotation.

(b) Moderate rotation (figure 6a, plate 1). The tank is approximately the size of the Rossby
radius. Horizontal single gyres of basin scale are formed on the shelf. The flow of hot water into
the shelf is cyclonic and the lower outflow from the sinking region is anticyclonic. The sinking
region is in the right-hand corner (facing offshore). Cold water formed there flows along the shelf
break, curving toward the right, hits the right-hand wall and spills off from the shelf in a strong
downwellingjet. As the rotation rate is increased, the width of the jet decreases, and curvature of
the gyre increases. Also the gyre tends to retreat toward the inner coastal part of the shelf.

(c) Strong rotation (figure 6b, plate 1). The tank is larger than the Rossby radius. Turbulent
eddies are predominant: they fill the shelf as well as the offshore region. Sinking occurs in the
centre of some, but not all, eddies. The eddies are mostly cyclonic in the upper layer and anti-
cyclonic in the lower layer but occasionally a gyre is cyclonic from top to bottom. The size of the
eddies decreases as the rotation rate is increased. On average the shelf-bottom water flows slowly
along the shelf break towards the right-hand side-wall (facing offshore) and flushes out as a
downwelling jet at the right-hand wall, but cyclonic eddies on the shelf break also contribute to
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the flushing of the shelf water. Warm surface water offshore enters onto the shelf intermittently
in the upper layer above the shelf break as well as along the left-hand side-wall (facing offshore).

The transition from (b) to (c) is variable. Sometimes two, three or four gyres are steady, at
other times the fluid is very unsteady.

Thermal structures

(d) Slow or zero rotation (figure 7a). Thermal effluents about 2.5 cm thick extend from the
offshore side-wall towards the shelf. They are cooled down rapidly but intrude close to the inner
coastal-wall boundary of the shelf by advection. Upper layers are well mixed (convection rolls
were clear) but the lower layer is stratified.

(b) Moderate rotation (figure 7b). Warm offshore water comes into the shelf along both the
right-hand and left-hand side-wall boundaries and then circulates. The density structure is
basically the same as that for (a) except that the width of the density current along the walls
decreases. There is a strong jet flowing along the shell break towards the right-hand side in the

,. lower layer. It hits the right-hand wall (facing offshore) and cascades down the slope.

(c) Fast rotation (figure 7 c). Temporal variability is significant owing to turbulent eddies, and
each vertical section differs. However, usually a distinct thermal front is formed at the shelf break,
although the front wanders around and varies in association with turbulent eddies.

This experiment, although extremely complicated physically, points out phenomena that may
exist on real shelves in winter (or on shelves subjected to intense evaporation). Measurements of
the curvature of the circulations on the shelf indicate that the radius of the gyres is roughly
proportional to the internal Rossby radius of deformation NH/f, where His the depth of the shelf

and N is the local Brunt-Vaisala frequency. Also, a sizeable percentage of the flux off the shelf
occurs near the right-hand wall, through a rotating density current. The magnitude of the
temperature difference between the sinking and offshore regions can be reasonably predicted
through -the use of simple rotating hydraulic formulas (as given in Whitehead et al. 1974) of the
form Q = g*h 2/2f, where h is the fluid depth of the entire shelf and Q is volumetric flux.
Equating g* = gaATandH =pCpATQ, where AT is the temperature difference between the
coldest water and the water offshore, we predict AT= (2fH/pCpzgh2)t. This formula was
reasonably well obeyed. There is usually a distinct front at the edge of the shelf which hinders
sizeable mass flux off the span of the shelf break. It is not known why this front is so persistent.
Finally, the sinking regions are only located in a predictable region for small rotadon rates (large
Rossby radius compared with the shelf). For larger rotation rates the sinking regions must first
be located by some remote sensing method. In the laboratory a human eye often suffices but in the
real ocean spaceborne or airborne sensors may have to be used. Finally, the elusive chimneys
(Killworth 1979) may have been observed here. The general nature of our sinking regions-
cyclonic inflow to a sinking region with one or more sinking plumes, and anticyclonic outflow from
the water formation region, seems to be similar. By forcing the water to have a convection region
we may have produced what may happen not only on shelves but also in deep polar oceans.

3. ROTATING GRAVITY CURRENT

The third laboratory models were done in conjunction with M. Stern, B. L. Hua & N. Paldor
(manuscript in preparation). The purpose was to model a gravity current in a rotating fluid. The
work was primarily motivated by a recent theory by Stern (io8o) and by the possibility that
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inertial jets lie along the coasts of some shelves, generated by intense spring run-off or large
I% • .. density contrasts near straits.

d.Experiments were made in a Plexiglass rectangular tank. Grooves were cut into the sides and

Ibttom of the t,.. to allow a slidinggate,of 22-gauge (0.80mm) stailcsssteel, todividethe tank

into two 'harnlers. The procedure was to fill the tank with tap water to a depth of 18.7 cm. A
measured amount of salt was added to the water, and the water was mixed thoroughly. The gate
was slid into the set of slits to a depth 10cm above the bottom of the tank, and two pieces of

" inch (or ca. 0.6 cm) plywood were floated in the shorter chamber on one side of the gate. The

tank was covered by a Plexiglass lid, the turntable was brought to the desired rate of rotation,
and the salt water was allowed to spin for 15 rin to reach a state close to solid-body rotation.
The preparation for the experiment was completed by siphoning some coloured water onto the
plywood floats in the small chamber until 4 cm of fresh water floated above the salty water.

After the gate was removed, the fresh water was observed to flow over the salt water, and the

Coriolis force caused the water to flow as a geostrophic gravity current towards the 'coast' (the
right-hand wall looking downstream with the basin rotating counterclockwise). The current was
then deflected by the wall and caused to flow downstream next to that wall. The current is similar
to a non-rotating density current in that it has a front deeper than the current behind, and was

observed to move with speed of approximately 1.6(g*h)i, where g* = gap/p, 8p is the density

difference between the two fluids, and h is the local depth. It differs from its non-rotating counter-
part in several ways. The most obvious is that it hugs the right-hand wall. It has a width of

approximately 0.4(g*h')if-. It detrains eddies laterally rather than vertically; these eddies lie

alongside the more laminar current.
It is anticipated that such currents may be encountered near the mouths of rivers or near straits

connecting bodies ofwater of different densities, in which case measurements of propagation speed
and width would be interesting. The observation of a possible gravity current by Mork (this sym-
posium) is promising.

4. CONCLUDING REMARKS

Very shallow shelves (§ 1), shelves with a strong break and sides (§ 2), and coastal jets (§ 3) have

been described in this paper. All experiments demonstrated the tendency for baroclinic processes
on shelves to form geostrophic turbulence. In the first experiment the cross-shelf density flux was

provided by viscous boundary layers. In the second and third by a side-wall. In shallow seas the

flushing may be aided or hindered by winds, bathymetry, tides, o[Tshore pressure gradients or
'4 other factors, but clearly the role of the eddies must often be addressed. This is one of the chal-

lenges for future laboratory studies.
We have purposely not applied these models in detail to specific shelves nor have we hoped to

cover comprehensively all the types of shelves in the world. Since there arc at least 150 000 km

of shelves in the world it is reasonable to expect that there are some shelves modelled well by

* these few examples, while others (possibly most) are not. A realistic assessment and hints for

other models will come as the oceanography of shallow seas matures.

Suport for this research was from the Ocean Sciences Division, National Science Foundation,
tinder Gr.'nt OCE80-1 8322 for the first two experiments, and the United States Office of Naval

Research for the third under contract N00014-81-C-0010. Thanks are due to T. Sugimoto for

allowing the use of his data and to Robert Frazel for skillitl l;horatory assistance.
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